
AP CS A (Java) Training
Unit 3: Class Creation
Updated Curriculum (2025-2026)

● Represent the design of a program by using natural language or
creating diagram that indicates the classes in the program and the
data and procedural abstractions found in each class by including
all attributes and behaviors.

3 . 1 Abstraction and Program Design

Learning Objectives:

Key Terms to Know
● Abstraction: Is the process of reducing complexity of systems by focusing

on their main idea.
● This is done by hiding unnecessary details, which makes it easier to

manage them. Some types of abstractions include:
○ Data abstraction(Ex. Color and character representation of binary)
○ Hardware abstraction(Turn off your TV by pressing power button from your wireless remote)
○ Software abstraction (Calling a method by simply referring to its name)

● An attribute is a type of data abstraction that is defined in a class outside
of any method or constructor.

● An instance variable is is an attribute whose value is unique to each
instance of the class.

● A class variable is an attribute shared by all instances of the class.
○ Recall: A class variable is indicated by the static keyword during its declaration.

Key Terms to Know
● Procedure abstraction is the process of calling a method by simply

referring to its name without having to know the details on how such a
method was implemented. You simply need to know what it does rather
than how it does it.

● Method decomposition allows programmers to break down larger
behaviors into smaller behaviors by creating methods to represent each
individual smaller behavior.

● This allows for code reuse which helps manage complexity.
● Parameters allow procedures to be generalized by enabling the the

procedures to be reused with a range of input values or arguments.
● Before implementing a class, it is important to take time to design each

class including its attributes and behaviors which can be represented
using natural language or diagram.

Abstraction
Abstraction is the process of hiding unnecessary details and showing only the essential features of something.

● When you use a phone, you press buttons to call. You don’t need to know how the electronics inside work.

● Similarly in programming, you can use a method or a class without knowing exactly how it works inside.

➤ Purpose of Abstraction:

● Simplifies complex systems.

● Focuses on what an object does, not how it does it.

➤ Example in Daily Life:

● A TV remote: You know which button changes the channel, but not how the signal is processed.
● Driving a car: When you drive a car, you only use the steering wheel, pedals, and gear. You don’t need to

understand how the engine, brakes, or transmission work internally.

Program Design
Program design is the process of planning how a program will be built. It involves thinking about the structure, the
components (like classes and methods), and how they work together.

Steps in Program Design:

1. Understand the Problem: What should the program do?

2. Identify Components: Break it into smaller parts (objects/classes).

3. Apply Abstraction: Hide unnecessary internal details.

4. Design Interactions: How components talk to each other.

5. Plan Data: What data is needed and where it will be stored.

6. Test and Improve: Make sure it works and improve it if needed.

How Abstraction Connects to Program Design

● Abstraction is a key tool in program design.

● It helps programmers focus on the main tasks without getting overwhelmed
by small internal details.

● Makes programs easier to read, maintain, and expand.

ATM Machine Design

Abstraction:

● Users only see buttons like Withdraw, Deposit, Check Balance.

● Users don’t see how data is fetched, verified, or how transactions are processed
internally.

 Program Design Steps:

● Classes: ATM, BankAccount, Transaction

● Methods: withdraw(), deposit(), checkBalance()

● Design how these classes interact to fulfill user actions.

Example of a BankAccount Class Design using UML diagram

Attributes

Behaviors

● Explain the social and ethical implications of computing systems

3 . 2 Impact of Program Design

Learning Objectives:

● System reliability refer to the program being able to perform its tasks as expected
under stated conditions without failure.

● Programmers should make an effort to maximize system reliability by testing the
program with a variety of conditions.

● The creation of programs has impacts on society, the economy, and culture.

● These impacts can be both positive and negative.

● Programs meant to fill a need or solve a problem can have unintended
consequences beyond their intended use.

● Legal issue and intellectual property concerns also arises when creating program.

● Programmers often reuse code written by others and published as open source
and free to use.

● Incorporation of code that is not published as open source requires programmers
to obtain permission and often purchase the code before integrating it into it into
program.

Key Terms to Know

Social and Ethical Implications of Computing Systems
Social Implications
These are the ways computing systems affect society, communities, and people's lives.

 Positive Impacts:

● Improved Communication: Social media, messaging apps, and video calls connect people
worldwide.

● Access to Information: The internet makes education, news, and knowledge widely accessible.

● Healthcare Advances: Medical technologies, online consultations, and health monitoring.

● Remote Work and Learning: Enables people to work or study from anywhere.

Social and Ethical Implications of Computing Systems
Negative Impacts:

● Job Displacement: Automation and AI can replace some jobs.

● Digital Divide: Not everyone has equal access to technology or the internet.

● Cyberbullying and Harassment: Social media misuse can harm individuals.

● Addiction and Mental Health Issues: Overuse of devices and apps can negatively affect
well-being.

● Privacy Loss: Personal data is often collected without full consent.

Ethical Implications of Computing Systems
Privacy:

● Is it ethical for companies to track users without clear consent?

● Example: Websites collecting user data without permission.

Security:

● Who is responsible when a security breach happens?

● Protecting personal and financial data is a major responsibility.

Bias and Fairness:

● Algorithms can be biased if they are trained on unfair data.

● Example: Using AI in hiring, lending, etc.

Ethical Implications of Computing Systems
Intellectual Property:

● Is it right to download or use software, music, or videos without paying?

● Respecting copyrights and creators' rights.

Digital Responsibility:

● How should users behave online?

● Includes avoiding plagiarism, cyberbullying, and spreading unverified information.

Environmental Impact:

● Computers and data centers use lots of energy and create electronic waste.

● Ethical responsibility includes designing eco-friendly systems.

In summary:

● We are living in a world where technology innovations are happening at an unprecedented
pace.

● With those fascinating innovations, there are consequences (beneficial and harmful) that will
tremendously impact the society.

● Ethical and social implications of computing systems should be of great concerns
● Computing system is not perfect, so their reliability should be taken seriously by programmers in

order to continue enhancing them.
● When creating software applications, legal and intellectual implications can also arise.
● Now, with the rapid integration of AI and machine learning, there are more concerns as how

the future of the world will be transformed.
● Overall, the creation of software programs will continue to have great impact on the society,

economies, and culture. With that in mind, programmers should take these issues into
consideration when creating software applications.

● Develop code to designate access and visibility constraints to
classes, data, constructors, and methods.

●

3 . 3 Anatomy of a Class

Learning Objectives:

● Data encapsulation:

○ Technique in which the implementation of details of a class are kept hidden from
external classes.

○ The keywords public and private affect the access of classes, data, constructors, and
methods.

○ In this course, classes are always designated as public and are associated with the
keyword class.

● Public

○ Allows access from classes outside the declaring class.

● Private

○ Restricts access to the declaring class

Key Terms to Know

● Instance variables

○ Belong to the object, and each object has its own copy of the variable

○ Access to attributes should be kept internal to the class in order to accomplish
encapsulation.

○ For this reason, it is a good programming practice to designate instance variables for
these attributes as private unless otherwise specified.

○

Key Terms to Know

Public vs. private access modifiers

Anatomy of a Class
● A class is a blueprint from which objects are created in Java.
● The first letter of a class name is always capitalized.
● The public and private keywords determine the visibility of classes, data,

constructors, and methods.
● In object-oriented programming design, data of a class should be

accessible only within that class. For this reason, instance variables are
declared as private.

● Constructors are declared as public
● Classes are declared as public
● Methods, which often define the behaviors of an object of a class, are

declared as either public or private.

Public Access
Rectangle.java MyProgram.java

public class Rectangle

{

/*public methods, variables and

constructors written in

Rectangle can be used in

MyProgram.java and in

Rectangle.java*/

}

Private Access
Rectangle.java MyProgram.java

public class Rectangle

{

/*private methods, variables and

constructors written in

Rectangle cannot be used in

MyProgram.java, but can be used

and accessed in Rectangle.java*/

}

Why private access???
• So why would we want to make any of our data private? We use private access

for methods and data in order to manage complexity by controlling how users
can interact with objects and hiding implementation details that are
unnecessary for users.

• This process of hiding the implementation details of a program is referred to as
encapsulation. This is one of the core principles of Object Oriented
Programming.

• Encapsulation is different than Abstraction because it is concerned with hiding
the internal state of an object, such as its instance variables, whereas
abstraction is concerned with hiding the details of how something works.

Anatomy of a Class

Anatomy of a Class (Example)
Below is an example of a Student class with its attributes, constructor, and behaviors

● Develop code to declare instance variables for the attributes to be
initialized in the body of the constructors of a class.

3 . 4 Constructors
Learning Objectives:

● Object’s state

○ Refers to its attributes and their values at a given time and is defined by instance
variables belonging to the object.

○ This establishes a has-a relationship between the object and its instance variables.

● Constructor

○ Must have the same name as the class

○ Must not have any return type(Not even void)

○ Is used to set the initial state of an object, which should include initial values for all
instance variables.

○ When a constructor is called, memory is allocated for the object.

○ When no constructor is defined, Java provides a non-parameter constructor, and the
instance variables are set to the default values according to the data type of the
attribute. This constructor is referred to as the default constructor.

● Default constructor:

○ Is a constructor with no parameter.

Key Terms to Know

Writing Constructors
● When writing a class, constructors usually start after the instance variables but

before the methods (think about the Student class we made in the previous slides)

● They typically start with a public and must contain the class’s name as the “name”
of the constructor
○ public Student()

● Parameters can go inside the parentheses to allow us to set instance variables
○ public Student(String studName, int age, double gpa)

● Classes usually have at least two constructors - one that takes in no parameters,
and another that takes all the parameters necessary to set all the instance
variables of the object

○ let’s look at an example...

Constructors(default values of instance variables)
IMPORTANT TO REMEMBER:

● A default constructor is a constructor with no parameter
● When no constructor is written by the programmer, Java provides a no-argument

default constructor, and the instance variables are set to the java default values for
that datatype (remember this ONLY happens if no constructor is written at all, if
there is/are constructor(s) written, then those are the only ones available) :

■ 0 for int; 0.0 for double; false for boolean; null for any object
datatype like String

Constructors (Default) (Currently Not defined by the programmer)

Default Constructor manually defined
● Programmers can manually create the default constructor

//default constructor defined.

Default Constructor Access Error

OVERLOADED Constructors(2 or more constructors defined)

● Develop code to define behaviors of an object through methods
written in a class using primitive values and determine the result of
calling these methods

3 . 5 Methods: How to Write Them
Learning Objectives:

● Void method

○ Does not return a value, and its header contains the keyword void before its name.

● Non-void method:

○ Return a single value, and its header includes the return type instead of the keyword
void.

○ In a non-void method, the return type indicated in the header must match the type of
the value being returned.

○ The return keyword is used to return the flow of control to the point where the method or
constructor was called, and any code that is sequentially after a return statement will
never be executed.

■ Executing a return statement inside a selection or iteration statement will halt the
statement and exit the method or constructor

● Accessor method: Allows objects of other classes to obtain a copy of the value of instance
variables or class variables. An accessor method is a non-void method.

● Mutator method: is a method that changes the value of the instance or class variables.

○ It is often defined as a void method.

Key Terms to Know

● A method is a block of code with a name that can be called to execute anywhere in the program.
● Methods promote code reusability and help make programs easier to debug.
● A method is made of access modifier(optional), return type, method name, parameter(s), method

body, and return value.
● Below is a structure of a method in Java.

Writing Methods

AccessModifier returnType methodName(Param List(optional)) {

//Body of the method

}

Writing Methods

● There 2 steps in creating a method.
● The first step is method declaration which is also known as method definition or implementation.

Below is an example of a method declaration/implementation. The name of the method is
multiply. The method is public, and it’s void method, so it returns nothing. The method doesn’t
take any parameter because there is nothing inside the parentheses of the method. The body of
the method is everything that is included inside the curly braces.

Example of a void method

● This is also an instance(object) method since the static keyword is not included in the method
header. This method is not accessible until an object(instance) is created.

Writing and calling a void method

//Creating an object from the method class
//Calling the multiply() method by using the object

Example of a non-void method

●

Writing and calling a non-void method

Writing and calling a non-void method

Define behaviors of an object through non-void methods without parameters written in a class.

● Accessor methods provide other objects read-only access to values of instance variables or
static variables.

● It must be a non-void method that returns a single value.
● The code below shows an example of a accessor method that returns the gpa for a student.

Accessor Methods

MyConsole.java

1 public class MyConsole {

2 public static void main(String args) {

3

4 Dessert donut = new Dessert();

5

6 System.out.print(donut.getPrice());

7 }

8 }

Dessert.java

1 public class Dessert {

2 private double price;

3 . . .

4 public double getPrice() {

5 return price;

6 }

7 }

An accessor method is a non-void method that returns a value stored in an instance
variable. Non-void methods return a value that is the same type as the return type in the

method signature.

It is public
so it is

accessible
from

outside of
the class.

The return type is
the type of the

value to be given
from the method -
usually matches

the variable type.

The name of the
method is

typically get
followed by the

name of the
instance variable.

The return
keyword exits the

method and
provides the value

to where the
method is called.

Then we
specify the

instance
variable

we want to
return.

Unit 2 Lesson 7 - Activity

MyConsole.java

1 public class MyConsole {

2 public static void main(String args) {

3

4 Dessert donut = new Dessert();

5

6 System.out.print(donut.getPrice());

7 }

8 }

Dessert.java

1 public class Dessert {

2 private double price;

3 . . .

4 public double getPrice() {

5 return price;

6 }

7 }

An accessor method gives the value stored in an instance variable.

We call the accessor method on the
object using the dot operator.

When we call the method, it will give
us the value stored in the price

instance variable.

Since the method returns a
value, we can either print it,
store it in a variable or use it

as part of an expression.

AP Practice Question

A. The getNumEmployees() method should be declared as private.

B. The getNumEmployees() method requires a parameter.

C. The return type of the getNumEmployees() method needs to be defined as String.

D. The return type of the getNumEmployees() method needs to be defined as int.

E. The return type of the getNumEmployees() method needs to be defined as void.

Consider the following class definition. The class does not compile.
public class Bakery {
 private int numEmployees;

 // Constructor not shown

 public getNumEmployees() {
 return numEmployees;
 }
}
The accessor method getNumEmployees() is intended to return numEmployees. Which of the following best
explains why the class does not compile?

All methods (except constructors) need a
return type(such as int, boolean, void).
Accessor methods return a value(the state
of the attribute), so it should have a return
type that matches the datatype of the
instance variable numEmployees (which is int).

Define behaviors of an object through void methods with or without parameters written
in a class.

● A mutator method is usually created with the void keyboard being placed before the method
name in the method signature

● Mutator methods are void methods that modify the values of instance and static variables.
● Unlike accessor methods, mutator methods do not return a value.
● The code below shows an example of a mutator method that changes the current name of of

a student.

Mutator Methods

MyConsole.java

1 public class MyConsole {

2 public static void main(String args) {

3

4 Dessert donut = new Dessert();

5

6 donut.setPrice(2.99);

7 }

8 }

Dessert.java

1 public class Dessert {

2 private double price;

3 . . .

4 public void setPrice(double newPrice) {

5 price = newPrice;

6 }

7 }

It is public so it is accessible from
outside of the class.

The return type is void since it does not
return a value.

The name of the method is typically set
followed by the name of the instance

variable.

We specify a parameter that matches
the type of the instance variable.

Then we assign the value passed to the
parameter to the instance variable.

A mutator method changes the value stored in an instance
variable.

MyConsole.java

1 public class MyConsole {

2 public static void main(String args) {

3

4 Dessert donut = new Dessert();

5

6 donut.setPrice(2.99);

7 }

8 }

Dessert.java

1 public class Dessert {

2 private double price;

3 . . .

4 public void setPrice(double newPrice) {

5 price = newPrice;

6 }

7 }

As void methods, they don’t return
any information they simply

perform an action, like changing
the state of an object.

When we call the method, we
pass the new value to set for the

price instance variable.

A mutator method changes the value stored in an instance
variable.

AP Practice Question
Consider the following class definition:

public class Liquid
{
 private int currentTemp;

 public Liquid(int temp)
 {
 currentTemp = temp;
 }

 public void resetTemp()
 {
 currentTemp = newTemp;
 }
}

Which of the following best identifies the reason why
the class does not compile?

(A) The constructor method does not
have a header

(B) the resetTemp method is missing a
return type

(C) the constructor should not have a
parameter

(D) the resetTemp method should
have a parameter

(E) the instance variable currentTemp
should be public instead of private

● Develop code to define behaviors of an object through methods
written in a class using object references and determine the result of
calling these methods.

3 . 6 Passing and Returning References of an Object
Learning Objectives:

Passing and Returning References of an Object in Java
● in Java, objects are passed by value of the reference, meaning the reference (or memory address) to the object is passed by

value, not the actual object itself. This allows methods to access and modify the object's internal state but not change the
reference itself in the caller.

Key Terms to Know

Passing Object References to Methods (Ex.1)

Passing Object References to Methods (Ex.2)

The changeName method changes the name
from the BankAccount object. Since the method
received the reference (a copy of the
reference), it affects the actual object.

Returning Object References from Methods
● A method can return an object reference, which means the caller receives the

reference to the same object (or a new object, depending on how it's
created).

● When an object is passed to a method, the method receives a copy of the reference to the
object.

● Changes to the object's fields inside the method will affect the original object.

Passing Object References to Methods (Example1) Result:

The method cloneAccount() returns a new
BankAccount object, not the original reference.

Changes to clonedAccount do not affect
account1.

Where the Reference Itself Doesn't Change:
While the object’s fields can be modified when passed to a method, assigning a new object to the
parameter inside the method does not affect the original reference.

Example Where the Reference Itself Doesn't Change:
class Student {
 String name;

 Student(String name) {
 this.name = name;
 }
}

public class ReferenceTest {
 public static void changeReference(Student s) {
 s = new Student("Bob");
 }

 public static void main(String[] args) {
 Student student = new Student("Eve");
 System.out.println("Before: " + student.name);

 changeReference(student);

 System.out.println("After: " + student.name);
 }
}

Before: Eve
After: Eve

The changeReference method creates a new
Student object, but this only changes the local
copy of the reference inside the method. The
original reference in main remains unchanged.

Summary of Object References in Java
Java passes object references by value. This means the reference (like an address) is
copied, but both the caller and the callee refer to the same object.

If a method modifies the object (like changing balance), it affects the original.

If a method reassigns the object reference itself (like account = new BankAccount()
inside the method), it does not affect the original reference outside the method.

When account = new BankAccount("Charlie", 5000);// is executed, it makes the local copy
// of the reference point to a new object.

● Develop code to define the behaviors of a class through class
methods

● Develop code to declare the class variables that belong to the class.

3 . 7 Class Variables and Methods
Learning Objectives:

Class Methods (Things you need to know)
Define behaviors of a class through static methods.

● Class methods are also called static methods because they are connected to the class, not the
object of the class.

● The keyword static needs to be included in the method header
● Class methods cannot access or change the values of instance variables or call instance methods

without being passed an instance of the class via a parameter.
● Class methods can access or change the values of class variables and can call other class

methods.
● Class variables are also called static variables because they are attached to the class, not

the object of the class.
● Class variables belong to the clas, with all objects of a class sharing a single copy of the class

variables.
● Class variables are declared by including the static keyword before the variable type.
● Class variables that are designated as public are accessible outside of the class by using the class

name and the dot operator(.) , since they are associated with a class, not objects of a class.
● When a variable is declare as final, its value cannot be modified.

Class Methods (Example)
Define behaviors of a class through static methods.

● Here is an example of a static method.

Program output

Class Variables (Examples)
● Here is an example of a static method.

Static variables are shared by all objects(instances) of the class
● Unlike non-static variables, static variables are shared by all objects(instances) of the class.

Any change made to a static variable by one object will be carried over to the next
object. Here is an example below:

Output of program: value of y was reset to
original value of 3 before getting in obj2.

Explain where variables can be used in the program code.

● Scope of variables determines where the variable can be accessed.
● Local variables are only accessible where they are declared.
● Variables declared as formal parameters and those declared inside a method or constructor are accessible only

inside that method or constructor.
● When a local variable has the same name as an instance variable, the local variable will take precedence

instead of the instance variable.
● Variables are often used by programmers to generalize solutions to a problem since it allows different input to be

used.
● Through the use of method decomposition, programmers often use variables which help them break down big

problems into smaller, manageable that can be handled individually.

3 . 8 Scope and Access
Learning Objectives:

Variable Scope and Access(Declared in the body of method)
In the example below, x and y are local variables because they are
declared inside the body of a method.

Variable Scope and Access(Declared as a parameter in the method header)
In the example below, percentInc is known as formal parameter which
is local and accessible only within the body of the increaseSalary
method.

Variable Scope and Access (Declared in the body of a constructor)
In the example below, count is a local variable because it is declared
inside a constructor called Employee, so count is accessible only within
the body of the constructor.

Develop code for expressions that are self-referencing and determine the result of these expressions.

● The this keyword is used inside a non-static method or constructor to refer to the object whose method or constructor is
being executed.

● Class methods do not have a this reference
● When a method is invoked(called), the this keyword can be passed as an argument to that method to refer to the current

object.
○ Below are some examples of how the this keyword is used with a method and constructor.

3 . 9 The this Keyword
Learning Objectives:

When a local variable has the same name as an instance variable.

Evaluate object reference expressions that use the keyword this.

● Below are some examples of how the this keyword is used with a method and constructor.

The this Keyword
Learning Objectives:

Evaluate object reference expressions that use the keyword this.

● Below are some examples of how the this keyword is used with a method and constructor.

The this Keyword
Learning Objectives:

Below are some examples of how the this keyword is used with a method and constructor.

The this Keyword

Below is the testing part of the program from the previous slide

The this Keyword

Output of the code:

References:
● This training document was prepared using some of the resources from

the CollegeBoard, including their AP Computer Science A course
page which can be found at the link below:

● https://apcentral.collegeboard.org/courses/ap-computer-science-a?
utm_source=chatgpt.com

●

https://apcentral.collegeboard.org/courses/ap-computer-science-a?utm_source=chatgpt.com
https://apcentral.collegeboard.org/courses/ap-computer-science-a?utm_source=chatgpt.com

