AP CS A (Java) Training

Unit 3: Class Creation
Updated Curriculum (2025-2026)

3.1 Abstraction and Program Design

Learning Objectives:

e Represent the design of a program by using natural language or
creating diagram that indicates the classes in the program and the
data and procedural abstractions found in each class by including
all attributes and behaviors.

/Ceg 72/’ ms to K’IOW

Abstraction: Is the process of reducing complexity of systems by focusing
on their main idea.
This is done by hiding unnecessary details, which makes it easier to

manage them. Some types of abstractions include:

o Data abstraction(Ex. Color and character representation of binary)
o Hardware abstraction(Turn off your TV by pressing power button from your wireless remote)
o Software abstraction (Calling a method by simply referring to its name)

An attribute is a type of data abstraction that is defined in a class outside
of any method or constructor.

An instance variable is is an attribute whose value is unique to each
instance of the class.

A class variable is an atftribute shared by all instances of the class.
o Recall: A class variable is indicated by the static keyword during its declaration.

/Ceg 72/’ ms to K’IOW

Procedure abstraction is the process of calling a method by simply
referring to its name without having to know the details on how such a
method was implemented. You simply need to know what it does rather
than how it does it.

Method decomposition allows programmers to break down larger
behaviors into smaller behaviors by creating methods to represent each
individual smaller behavior.

This allows for code reuse which helps manage complexity.

Parameters allow procedures to be generalized by enabling the the
procedures to be reused with a range of input values or arguments.
Before implementing a class, it is important to take time to design each
class including its aftributes and behaviors which can be represented
using natural language or diagram.

Abstraction

Abstraction is the process of hiding unnecessary details and showing only the essential features of something.

e When you use a phone, you press buttons to call. You don’t need to know how the electronics inside work.

e Similarly in programming, you can use a method or a class without knowing exactly how it works inside.

> Purpose of Abstraction:

e Simplifies complex systems.

e Focuses on what an object does, not how it does it.

> Example in Daily Life:

e ATV remote: You know which button changes the channel, but not how the signal is processed.
e Driving a car: When you drive a car, you only use the steering wheel, pedals, and gear. You don’t need to
understand how the engine, brakes, or transmission work internally.

Progmm Design

Program design is the process of planning how a program will be built. It involves thinking about the structure, the
components (like classes and methods), and how they work together.

Steps in Program Design:

1. Understand the Problem: What should the program do?

2. Identify Components: Break it into smaller parts (objects/classes).
3. Apply Abstraction: Hide unnecessary internal details.

4. Design Interactions: How components talk to each other.

5. Plan Data: What data is needed and where it will be stored.

6. Test and Improve: Make sure it works and improve it if needed.

How Abstraction Connects to Progmm Design

Abstraction is a key tool in program design.

It helps programmers focus on the main tasks without getting overwhelmed
by small internal details.

Makes programs easier to read, maintain, and expand.

AT M Machine Design

Abstraction:

e Users only see buttons like Withdraw, Deposit, Check Balance.

e Users don’t see how data is fetched, verified, or how transactions are processed
internally.

Program Design Steps:

e Classes: ATM, BankAccount, Transaction
e Methods: withdraw(), deposit(), checkBalance()

e Design how these classes interact to fulfill user actions.

Example of a BaneAccount Class Design using UML diagram

BankAccount |

- accountNumber: int | .
Attributes

- balance: double |

- ownerName: String |

+ deposit(amount: double): void

+ withdraw(amount: double): void

Behaviors

|
|
+ getBalance(): double |
+ getAccountNumber(): int |

|

+ getOwnerName(): String

3-2 Impact of Program Design

Learning Objectives:

e Explain the social and ethical implications of computing systems

Key Terms to Know

System reliability refer to the program being able to perform its tasks as expected
under stated conditions without failure.

Programmers should make an effort to maximize system reliability by testing the
program with a variety of conditfions.

The creation of programs has impacts on society, the economy, and culture.
These impacts can be both positive and negative.

Programs meant to fill a need or solve a problem can have unintended
consequences beyond their infended use.

Legal issue and intellectual property concerns also arises when creating program.

Programmers often reuse code written by others and published as open source
and free to use.

Incorporation of code that is not published as open source requires programmers
to obtain permission and often purchase the code before integrating it into it info
program.

Social and Ethical Implications of Computing Systems

Social Implications

These are the ways computing systems affect society, communities, and people's lives.

Positive Impacts:

e Improved Communication: Social media, messaging apps, and video calls connect people
worldwide.

e Access to Information: The internet makes education, news, and knowledge widely accessible.
e Healthcare Advances: Medical technologies, online consultations, and health monitoring.

e Remote Work and Learning: Enables people to work or study from anywhere.

Social and Ethical Implications of Computing Systems

Negative Impacts:

e Job Displacement: Automation and Al can replace some jobs.
e Digital Divide: Not everyone has equal access to technology or the internet.
e Cyberbullying and Harassment: Social media misuse can harm individuals.

e Addiction and Mental Health Issues: Overuse of devices and apps can negatively affect
well-being.

e Privacy Loss: Personal data is often collected without full consent.

Ethical Implications of Computing Systems

Privacy:

e s it ethical for companies to track users without clear consent?

e Example: Websites collecting user data without permission.
Security:

e Who is responsible when a security breach happens?

e Protecting personal and financial data is a major responsibility.
Bias and Fairness:

e Algorithms can be biased if they are trained on unfair data.

e Example: Using Al in hiring, lending, etc.

Ethical Implications of Computing Systems

Intellectual Property:

e |[sitright to download or use software, music, or videos without paying?

e Respecting copyrights and creators' rights.
Digital Responsibility:

° How should users behave online?

e Includes avoiding plagiarism, cyberbullying, and spreading unverified information.
Environmental Impact:

e Computers and data centers use lots of energy and create electronic waste.

e Ethical responsibility includes designing eco-friendly systems.

In summary:

We are living in a world where technology innovations are happening at an unprecedented
pace.

With those fascinating innovations, there are consequences (beneficial and harmful) that will
tremendously impact the society.

Ethical and social implications of computing systems should be of great concerns
Computing system is not perfect, so their reliability should be taken seriously by programmers in
order to continue enhancing them.

When creating software applications, legal and intellectual implications can also arise.

Now, with the rapid integration of Al and machine learning, there are more concerns as how
the future of the world will be transformed.

Overall, the creation of software programs will continue to have great impact on the society,
economies, and culture. With that in mind, programmers should take these issues into
consideration when creating software applications.

33 Anatomy of a Class

Learning Objectives:

e Develop code to designate access and visibility constraints to
classes, data, constructors, and methods.

Key Terms to Know

e Data encapsulation:

o Technique in which the implementation of details of a class are kept hidden from
external classes.

o The keywords public and private affect the access of classes, data, constructors, and
methods.

o In this course, classes are always designated as public and are associated with the
keyword class.

e Public
o Allows access from classes outside the declaring class.
e Private

o Restricts access to the declaring class

Key Terms to Know

e Instance variables
o Belong to the object, and each object has its own copy of the variable

o Access to attributes should be kept internal to the class in order to accomplish
encapsulation.

o Forthisreason, it is a good programming practice to designate instance variables for
these attributes as private unless otherwise specified.

Public s, pr[\)ate ACCeSS moa’ﬁer&

Keyword Meaning

public Accessible from
anywhere in the

program.

private Accessible only within

the same class.

Access Level

Can be accessed from any class,
whether inside the same package or

in different packages.

Cannot be accessed from outside
the class. Used to protect data and

enforce encapsulation.

Example Use Case

Methods like main() , APlIs,

interfaces.

Class variables like balance,

passwords.

Anatomy of a Class

A class is a blueprint from which objects are created in Java.
The first letter of a class name is always capitalized.

The public and private keywords determine the visibility of classes, datq,
constructors, and methods.

In object-oriented programming design, data of a class should be
accessible only within that class. For this reason, instance variables are
declared as private.

Constructors are declared as public

Classes are declared as public

Methods, which often define the behaviors of an object of a class, are
declared as either public or private.

PUBLIC ACCESS

Rectangle. java MyProgram.java

public class Rectangle

{
/*public methods, variables and
constructors written in
Rectangle can be used in
MyProgram.java and in
Rectangle.java*/

PRIVATE ACCESS

Rectangle. java MyProgram.java

public class Rectangle

{
/*private methods, variables and
constructors written in
Rectangle cannot be used in
MyProgram.java, but can be used
and accessed in Rectangle.java*/

WHY PRIVATE ACCESST]

 So why would we want to make any of our data privatee We use private access
for methods and data in order to manage complexity by controlling how users
can interact with objects and hiding implementation details that are
unnecessary for users.

e This process of hiding the implementation details of a program is referred to as
encapsulation. This is one of the core principles of Object Oriented
Programming.

 Encapsulation is different than Abstraction because it is concerned with hiding
the internal state of an object, such as its instance variables, whereas
abstraction is concerned with hiding the details of how something works.

Armtomy of a Class
public class ClassName {

//The body of the class from here to line 24

private String nameOfAttributel;
private int nameOfAttribute?;

2

3

4

8 //Attributes of the elass.

6

!

8 private double nameOfAttribute3;

9
10 //Constructor of the class
il Je public className () {
2 nameOfAttributel="nameChoice";
13 nameOfAttribute3=intValuechoice
14 }
15
16 //Methods of the class
17 public void methodl () {
18 //body of methodl
ke }
20
21e public void method2 (String varName) ({
22 //body of method2
23 }

24 }

Anatomy of a Class (Example)

Below is an example of a Student class with its attributes, constructor, and behaviors
2 public class Student {

W

4 //Attributes of the class describing a student.
5 private String studName;

(S private int age;

7 private double gpa;

8

B/ /constrnctor of ‘the élass

1 0e public Student () {

Lk studName="Michael Smith";

12 age=18;

L] gpa=3.5;

14 }

e / /Method to change the name of a student

1 e public void changeName (String newName) ({
18 studName=newName ;

i[ES) }

20

21 //Method to print the a student's informatior
2 e public void printStudInfo () {

23 System.out.println ("Name: "+studName) ;
24 System: out.println (“"Age: "+age);

s System. out.println ("GRPA: "“+gpa) s

26 }

27T |k

3-4 Constructors
Learning 0[y’ecti0es:

e Develop code to declare instance variables for the attributes to be
inifialized in the body of the constructors of a class.

/Cey T€f ms to /CVIOW

e Object's state

o Refers to its attributes and their values at a given time and is defined by instance
variables belonging to the object.

o This establishes a has-a relationship between the object and its instance variables.
e Constructor

o Must have the same name as the class

o Must not have any return type(Not even void)

o Isused to set the initial state of an object, which should include initial values for all
instance variables.

o When a constructor is called, memory is allocated for the object.

o When no constructor is defined, Java provides a non-parameter constructor, and the
instance variables are set to the default values according to the data type of the
attribute. This constructor is referred to as the default constructor.

e Default constructor:

o Is a constructor with no parameter.

WRITING CONSTRUCTORS

e When writing a class, constructors usually start after the instance variables but
before the methods (think about the Student class we made in the previous slides)

e They typically start with a public and must contain the class’'s name as the Y“name”
of the constructor
o public Student()

e Parameters can go inside the parentheses to allow us to set instance variables
o public Student(String studName, int age, double gpa)

e Classes usually have at least two constructors - one that takes in no parameters,
and another that takes all the parameters necessary to set all the instance
variables of the object

o let'slook at an example...

Constructors(dg‘ault Values gf instance Variables)

IMPORTANT TO REMEMBER:
A default constructor is a constructor with no parameter

When no constructor is written by the programmer, Java provides a no-argument
default constructor, and the instance variables are set to the java default values for
that datatype (remember this ONLY happens if no constructor is written at all, if
there is/are constructor(s) written, then those are the only ones available) :
m Oforint; 0.0 for double; false for boolean; null for any object
datatype like String

oo iR oW O G W -

CONSTRUCTORS (DEFAULT) (CURRENTLY NOT DEFINED BY THE PROGRAMMER)

public class Student [f]
private String studName;
private int age;
private double gpa;

}

public static void main(String[] args) {
//Creating a student object
Student stud= new Student();//OK, even though there is constructor defined.
//Java automatically provides one.
System.out.println(stud.studName) ;
System.out.println(stud.age);
System.out.println(stud.gpa);

<terminated> Student (1) [Java Application] C:\Users\JR
null

0

0.0

DEFAULT CONSTRUCTOR MANUALLY DEFINED
e Programmers can manually create the default constructor

public class Student |
private String studName;
private int age;
private double gpa;

public Student() { //default constructor defined.
studName="Andony Green";
age=19;
gpa=3.2;
}

public static void main(String[] args) {
//Creating a stud biject
Student stud= new Student();//OK, even though there is constructor

System.out.println(stud.studName) ;

System.out.println(stud.age);
System.out.println(stud.gpa);

& Console X

<terminated> Student (1) Java Application] C:\Users\JR\D
Andony Green
18

B2

Default Constructor Access Error

1 public class Student {

2 private String studName;
3 private int age;
4 private double gpa;
5
Ge public Student (String name, int studAge) {
7 studName=name;
8 age=studAge;
9 gpa=3.2;
10 }
11
12e public static void main(String[] args) {
13 //Creating a student object
wl4d Student stud= new Student ();//ERROR: No default constructor provided.
15 //Java did not automatically provides one.
16 Student stud2=new Student ("Andony Green", 19);
i/ System.out.println (stud.studName) ;
18 System.out.println (stud2.age) ;
19 System.out.println (stud2.gpa) ;
20 }
21 |}

<terminated> Student (1) [Java Application] C:\Users\JR\Documents\Eclipse\eclipse\plugins\org.eclipse.justj.openjdk.hotspot.jre.fullwin32.x86_64_17.0.5.v202211

Exception in thread "main" java.lang.Error: Unresolved compilation problem:
The constructor Student () is undefined

at Student.main (Student.java:14)

OVERLOADED CONSTRUCTORS(Z Ok MORE CONSTRUCTORS DEFINED)

2 public class Student {

3
4 //Attributes of the class describing a student.
D private String studName;
6 private int age;
i private double gpa;
8
9 //Initializing the attributes through the constructor
10- public Student ()
11 studName="Michael Smith";
% age=18;
13 gpa=3.5;
14 }

//This is an example of a non-default constructor
public Student (String name, int studAge,double studGpa)
studName=name ;
age=studAge;
gpa=studGpa;

3-5 Methods: ttow to Write Them
Learning 0[y'ecti0es.°

e Develop code to define behaviors of an object through methods
written in a class using primitive values and determine the result of
calling these methods

Key Terms to Know

e Void method
o Does not return a value, and its header contains the keyword void before its name.

e Non-void method:

o Return asingle value, and its header includes the return type instead of the keyword
void.

o In anon-void method, the return type indicated in the header must match the type of
the value being returned.

o Thereturn keyword is used to return the flow of control to the point where the method or
constructor was called, and any code that is sequentially after a return statement will
never be executed.

m Executing areturn statement inside a selection or iteration statement will halt the
statement and exit the method or constructor

e Accessor method: Allows objects of other classes to obtain a copy of the value of instance
variables or class variables. An accessor method is a non-void method.

e Mutator method: is a method that changes the value of the instance or class variables.

o Itis often defined as a void method.

Wr[tz’ng Methods

e A methodis a block of code with a name that can be called to execute anywhere in the program.
e Methods promote code reusability and help make programs easier to debug.

e A method is made of access modifier(optional), return type, method name, parameter(s), method
body, and return value.

e Belowis a structure of a method in Java.

AccessModifier returnType methodName (Param List(optional)) {

//Body of the method

Writing Methods

There 2 steps in creating a method.

The first step is method declaration which is also known as method definition or implementation.
Below is an example of a method declaration/implementation. The name of the method is
multiply. The method is public, and it's void method, so it returns nothing. The method doesn’t
take any parameter because there is nothing inside the parentheses of the method. The body of
the method is everything that is included inside the curly braces.

public void multiply () {
int x=5;
int y=3;
int result=x*y;
System.out.println(result) ;

Example of a void method

This is also an instance(object) method since the static keyword is not included in the method
header. This method is not accessible until an object(instance) is created.

public void multiply () {
int x=5;
int v=3;
int result=x*y;
Systen.out.printinresult);

NoOoodWwN

YOO WNROOV®

1

Writing and calling a void method

public class Method {

public wvoid mualEiply(): {
ant sc—5g
int y=33
int result=x*y;
System.out.println (result) ;

public static void main(String[] args)
Method myMethod=new Method () ; //Creahng an object from the method class

myMethod.multiply O ;| //calling the multiply() method by using the object

<terminated> Method [Java Application
15

Example of a non-void method

public int multiply() [{
int x=5;
int y=3;
int result=x*y;
return result;

= b

Writing and calling a non-void method

2 public class Method {

I

WO PdW

public int multiply ()
ant >x—5;
int yv=3;
int result=x*y;
return result;

public static void main(String[] args) {
Method myMethod=new Method () ;
System.out.println (myMethod.multiply ()) ;

} —— b

<terminated> Method [Java Application
L5

~ o

DO OO WNRFOWONOUMPdW

Writing and calling a non-void method
2 public class Method {

1

public int multiply () {
int x=5;
int y=3;
int result=x*y;
return result;

}

public static void main (String[] args) [{
Method myMethod=new Method() ;
//one way to access a value from a non—-void method
System.out.println (myMethod.multiply ()) ;
//Another way to access a value from a non-void method
int value=myMethod.multiply () ;
System.out.println (value) ;

—

2 Console X

<terminated> Method [Java Applicatic
15

15

Accessor Methods

Define behaviors of an object through non-void methods without parameters written in a class.

e Accessor methods provide other objects read-only access to values of instance variables or
static variables.

It must be a non-void method that returns a single value.

The code below shows an example of a accessor method that returns the gpa for a student.

ublic class Student ({

N

/Attributes of the class describing a student.
private String studName;
private int age;
private double gpa:;

//Initializing the attributes through the constructo:
public Student () {
studName="Michael Smith";
age=18;
gpa=3.5;

}
//This is an example of an accessor method.
public double getGpa () {
return gpa;//

OLOUDNWNROOVLOILOAUNWN © @

-

An accessor method is a non-void method that returns a value stored in an instance
variable. Non-void methods return a value that is the same type as the return type in the

MyConsole.java method SigﬂOTure.
' public class MyConsole { T

public class Dessert {

public static void main(String args) {])
private double price;

Dessert donut = new Dessert(); — - |
public double|getPrice()|{

returnlprice

System.out.print(donut.getPrice());

} I

¥ LT
Itis public | The return typeis | The name of the The return Then we

SO it s the type of the method is keyword exits the || specify the
accessible | value to be given typically get method and instance

from from the method - | followed by the || provides the value variable
outside of usually matches name of the to where the we want to
the class. the variable type. | instance variable. || method is called. return.

An accessor method gives the value stored in an instance variable.

public class MyConsole { ii public class Dessert {
public static void main(String args) { ii private double price;
Dessert donut = new Dessert(); EE public double getPrice() {
. return price; |
System.out.print(donut.getPrice()); || }
} 7

N We call the accessor method on the
object using the dot operator.

Since the method returns a

value, we can either print it, When we call the method, it will give
store it in a variable or use it us the value stored in the price

as part of an expression. insfance variable.

AP PRACTICE QUESTION

Consider the following class definition. The class does not compile.
public class Bakery {

private int numemployees; All methods (except constructors) need a

return type(such as int, boolean, void).

// Constructor not shown Accessor methods return a value(the state
of the attribute), so it should have a return
public getNumEmployees() { type that matches the datatype of the
return numEmployees; instance variable numEmployees (which is int).
}

}

The accessor method getNumEmployees () is intended to return numEmployees. Which of the following best
explains why the class does not compile?

A. The getNumEmployees() method should be declared as private.
The getNumEmployees () method requires a parameter.

The return type of the getNumEmployees () method needs to be defined as String.

The return type of the getNumEmployees () method needs to be defined as int.

Mol «w

The return type of the getNumEmployees () method needs to be defined as void.

ad WwiN

HOWmo

W N

(Gl
Ul

Mutator Methods

Define behaviors of an object through void methods with or without parameters written
in a class.

® A mutator method is usually created with the void keyboard being placed before the method

name in the method signature

e Mutator methods are void methods that modify the values of instance and static variables.

e Unlike accessor methods, mutator methods do not return a value.
The code below shows an example of a mutator method that changes the current name of of
a student.

public class Student {

//Attributes of the class describing a student.
private String studName;
private int age;
private double gpa;

//Initializing the attributes through the constructor
public Student () {
studName="Michael Smith";
age=18;
gpa=3.5;
b

//Example of a mutator method to change the name of a student
public void setName (String newName) {
studName=newName ;

}

A mutator method changes the value stored in an instance

: variabte:
... Itis public so it is accessible from
.1 public class MyConsole { outside of the class.

public static void main(String args) {

The return type is void since it does not

Dessert donut = new Dessert(); return a value

donut.setPrice(2.99); is typi
onut.setPrice(2.99) The name of the method is typically set

| } followed by the name of the instance
] variable.

ublic class Dessert)
g { We specify a parameter that matches

ivate doubl ice; i i
private double price the type of the instance variable.

publiclvoid setPricgkdouble newPrice)|{ ' .
price = newPrice; Then we assign the value passed to the

} parameter to the instance variable.

__

A mutator method changes the value stored in an instance

e varadble.

public class MyConsole {
public static void main(String args) {

Dessert donut = new Dessert();

donut.setPrice(2.99);

public class Dessert {
private double price;

public void setPrice(double newPrice) {
price = newPrice;

__

As void methods, they don’t return
any information they simply
perform an action, like changing
the state of an object.

When we call the method, we
pass the new value to set for the
price instance variable.

AP PRACTICE QUESTION

Consider the following class definition: (A) The constructor method does not

public class Liquid have a header
{

private int currentTemp; (B) the resetTemp method is missing a

public Liquid(int temp) return type
{

}

currentiemp = temp; (C) the constructor should not have a

parameter

public void resetTemp()

{ [(D) the resetTemp method should]

currentTemp = newTemp;

} have a parameter

(E) the instance variable currentTemp
Which of the following best identifies the reason why should be public instead of private

the class does not compile?

5.6 Passing and Returning Rgferences gf an O@ect
Learning Oly'ectNes:

e Develop code to define behaviors of an object through methods
written in a class using object references and determine the result of
calling these methods.

Key Terms to Know

Passing and Returning References of an Object in Java

® in Java, objects are passed by value of the reference, meaning the reference (or memory address) to the object is passed by
value, not the actual object itself. This allows methods to access and modify the object's internal state but not change the
reference itself in the caller.

Passing Object References to Methods (Exs)

public class BankDemo {

public static void addBonus(BankAccount account) {

account.deposit(500);
Before:

Alice has $1000.0

3

public static void main(String[] args) {
BankAccount myAccount = new BankAccount("Alice™, 1000); After adding bonus:

Alice has $1500.0

System.out.println("Before:");
myAccount.displayInfo();

addBonus (myAccount);

System.out.println(“After adding bonus:");

myAccount.displayInfo();
e The method addBonus(BankAccount account) receives a reference t0 myAccount .
e |tcalls account.deposit(500) , which modifies the original myAccount object.

e This shows that the object reference, not a copy, is passed.

Passing Object References to Methods (Exa)

2 c¢lass BankAccount {

4 String custName;

oe BankAccount (String name) {

7 custName=name; The changeName method changes the name

5 } from the BankAccount object. Since the method
) 9} received the reference (a copy of the

0

reference), it affects the actual object.
11 public class PassingObjectRef {

12

13e public static void changeName (BankAccount account) ({

14 account.custName="Jayzen";

15 }

16

17e public static void main(String[] args) {

18 BankAccount acct=new BankAccount ("Bryan");) : : o
19 <terminated> PassingObjectRef [Java Applicatior
20 System.out.println ("Name before "+acct.custName) ;

21 changeName (acct) ; Name before Bryan

22

23 System.out.println("Name after "+acct.custName) ; Name after Jayzen

24 }

oW

Returning Object References from Methods

. A method can return an object reference, which means the caller receives the
reference to the same object (or a new object, depending on how it's
created).

e \When an object is passed to a method, the method receives a copy of the reference to the
object.
e Changes to the object's fields inside the method will affect the original object.

Result:

Passing Object References to Methods (Examples)

public class Bankl

Original Account:

e
public static BankAccount cloneAccount(BankAccount original) { BOb haS :’2996 - @
return new BankAccount(original.accountHolder, original.getBalance());
} Cloned Account:
i - 3 3 3 i 8 - a
public static void main(String[] args) { Bob has ‘,*)2@@@.@
BankAccount accountl = new BankAccount("Bob™, 2000);

After modifying cloned account:

BankAccount clonedAccount cloneAccount(accountl); Or‘iginal Account:

System.out . println("Original Account:"); BOb haS $2@@@-9

accountl.displayInfo();
Cloned Account:

System.out.println("Cloned Account:"); Bob has $3®@® o
clonedAccount . _displayInfo();)

clonedAccount.deposit(1000);

System.ocut . . println("After modifying cloned account:");

Syste“‘-‘”z-P“i"“"i"‘(")‘*——‘i"“1 BCCBunREL)) The method cloneAccount () returns a new
accountl.dis ayInfo = - «
o BankAccount object, not the original reference.

System.out . .println("Cloned Account:™);
clonedAccount._.displayInfol();

Changes to clonedAccount do not affect
accountT.

"

()

Where the Reference Itself Doesn t Change:

While the object’s fields can be modified when passed to a method, assigning a new object to the
parameter inside the method does not affect the original reference.

Example Where the Reference Itself Doesn't Change:

class Student {

String name;
Before: Eve
Student(String name) { After: Eve
this.name = name;
}
}
public class ReferenceTest {
public static void changeReference(Student s) {
s = new Student("Bob"); The changeReference method creates a new
} Student object, but this only changes the local

copy of the reference inside the method. The

public static void main(String]] args) { original reference in main remains unchanged.

Student student = new Student("Eve");
System.out.printin("Before: " + student.name);
changeReference(student);

System.out.printin("After: " + student.name);

Summary of Object References in Java

Java passes object references by value. This means the reference (like an address) is
copied, but both the caller and the callee refer to the same object.

If a method modifies the object (like changing balance), it affects the original.

If a method reassigns the object reference itself (like account = new BankAccount()
inside the method), it does not affect the original reference outside the method.

When account = new BankAccount("Charlie", 5000);// is executed, it makes the local copy
Il of the reference point to a new object.

Action Does it affect the original object?

account.deposit(500); L Yes

account = new BankAccount(...); > No (only local to the method)

3.7 Class Variables and Methods
Learning Objectives:

e Develop code to define the behaviors of a class through class
methods

e Develop code to declare the class variables that belong to the class.

Class Methods (" T hings you need to know)

Define behaviors of a class through static methods.

e Class methods are also called static methods because they are connected to the class, not the
object of the class.
The keyword static needs to be included in the method header

e Class methods cannot access or change the values of instance variables or call instance methods
without being passed an instance of the class via a parameter.

e Class methods can access or change the values of class variables and can call other class
methods.

e Class variables are also called static variables because they are attached to the class, not
the object of the class.

e Class variables belong to the clas, with all objects of a class sharing a single copy of the class
variables.
Class variables are declared by including the static keyword before the variable type.

e Class variables that are designated as public are accessible outside of the class by using the class

name and the dot operator(.) , since they are associated with a class, not objects of a class.
e When a variable is declare as final, its value cannot be modified.

Class Methods (Example)

Define behaviors of a class through static methods.

e Hereis an example of a static method.

1 public class StaticDemo {
2 //multiply is now a static method because
3 //of the keyword static placed in the method header

4e public static wvoid multiply () {

5] int x=5;

& int y=3; Program outfput

F int result=x*y; & Console %

8 System:out.println(result) ; <terminated> StaticDemo [Java ,
9 } 15

2 15

1. e public sstatic xwmoid main(Strinmg] args) {

:? StaticDemo m=—new StaticDemo () ; 15

[l3 //Calling multiply directly with the classname

3 i | StaticDhDemo.multiply () ;

1S //Calling multiply directly with an object of the classname

5.6 mi-mizLtaply () ;

17 //Method multiply can also be called as follows since it is stati
el ol (O

0

Class Variables (Examples)

——— - _. i i IS B R

22public claéé”StatlcVarlables {

o O B W

10
11
12
13
14
L5
1 6
L 1%

public static int x=1;//Available when the class is loaded
public int y=3;//Not available until an object is created.

public static void main(String[] args) {

System.out.println(x);//OK since x is available
System.outiprintlnly) ; / /Error beecanse y will not be

//available until an object is created.
System.out.println(StaticVariables.x);//OK
System.out.println(StaticVariables.y);//Error: y is not static
StaticVariables d=new StaticVariables();//Object is created
System.out.println(d.x);//OK.Can also be accessed with object
System.out.println(d.y);//0OK

Static variables are shared by all objects(" instances) of the class

e Unlike non-static variables, static variables are shared by all objects(instances) of the class.
Any change made to a static variable by one object will be carried over to the next

22pﬁblié-élaés StaticvValueShare{
3
4 public static int x=1;//x is static and will be available
5 / /when the class is loaded
© public int v=3;//y is non—static and will not be available
Fi //7until an object is created.
8 Output of program: value of y was reset to
o | ffEreabing the oonstraebor gof Tthe glass original value of 3 before getting in obj2.
L,Of public StaticValueShare () { Current values of x and y in objl are printed
i I Xt
[554 v++; X: 2
S| } y: 4
14 Current values of x and y in obj2 are printed
11 5e public static void main(String[] args) { X: 3
16 //Object objl is created y: 4
i StaticValueShare objl=new StaticValueShare () ;
18 System.:out.prinktln ("Current. values ©f s and y .Ain b))l are pinted®) ;
19 Sy sifeoTt: I NI NSy "o - 5%)'F
20 Sy skbem..omtspainlalnd(™ ™y “rebgday) ;7

821 //Another object obj2 is c¢reated

ioo StaticValueShare obj2=new StaticValueShared () ;

%2% Systtem.ount.prinmtln (“Currenkt walues of 3x and y in obj2 are printed")
=24 Sy stem..out pEintlng("xX: “irebj2.5%) 7

%25 SyiskEem-out prinbElin(My =8 Eelh5] 2)

26 }

27 }

3-8 Scope and Access
Learning Objectives:
Explain where variables can be used in the program code.

e Scope of variables determines where the variable can be accessed.

Local variables are only accessible where they are declared.

e Variables declared as formal parameters and those declared inside a method or constructor are accessible only
inside that method or constructor.

e When alocal variable has the same name as an instance variable, the local variable will take precedence
instead of the instance variable.

e Variables are often used by programmers to generalize solutions to a problem since it allows different input to be
used.

e Through the use of method decomposition, programmers often use variables which help them break down big
problems into smaller, manageable that can be handled individually.

Variable Scope and Access(Declared in the body of method)

In the example below, x and y are local variables because they are
declared inside the body of a method.

He public static void multiply () {
6 int x=5;

¥ int y=3;

8 int result=x*y;

9 System.out.println (result);

Var iable Jco,ue dﬂd J4€C€SS(Declar EJ as a Inammeter in t/:e metho(/ hem/er)

In the example below, percentinc is known as formal parameter which
is local and accessible only within the body of the increaseSalary

method.
//Method to increase salary by a percentage
public double increaseSalary(double percentlInc)
salary=salary+ salary*percentlnc;
return salary;

Variable Scope and Access (* Declared in the body of a constructor)

In the example below, count is a local variable because it is declared
inside a constructor called Employee, so count is accessible only within
the body of the constructor.

//Defining a default constructor for the Employee class
public Employee () {
name="Bryan Singer";
1d="A12345";
isFullTime=false;
int count=0;

V]

3.9 The this Keyword

Learning Objectives:

Develop code for expressions that are self-referencing and determine the result of these expressions.

The this keyword is used inside a non-static method or constructor to refer to the object whose method or constructor is
being executed.
Class methods do not have a this reference
When a method is invoked(called), the this keyword can be passed as an argument to that method to refer to the current
object.

o Below are some examples of how the this keyword is used with a method and constructor.

When a local variable has the same name as an instance variable.

2 public class TheThisKeyword ({

3
4

private String name;//instance variable

public void changeName (String name)
this.name=name;//this.name refers to the instance variable
//name on line 4. It sets the instance variable
//to the local variable name on line 6 (parametei

The this Keyword

Learning Objectives:

Evaluate object reference expressions that use the keyword this.

e Below are some examples of how the this keyword is used with a method and constructor.

2 public class Custemer {

3 private String name;//instance variable

4 private int age;

5

6 //Default constructor

Te public Customer () {

8 Ehais("Jehn", 258)://calling tThe non-defaull constracetor
9 //shown on line 13
10 }
i i
1.2 //Non—-default constructor
13e publiec Customer(String custName, int custAge) {
14 name=custName;
15 age=custAge;

The this Keyword

Learning Objectives:

Evaluate object reference expressions that use the keyword this.

e Below are some examples of how the this keyword is used with a method and constructor.

g?publlc class Customer ({
private String name;//instance variable
private int age;

//Non-default constructor
public Customer setName (String name) {
this.name=name;
return this;//this will return the current object

=
= O W oo Jolo & W

The this Keyword

Below are some examples of how the this keyword is used with a method and constructor.

2 public class Customer {

22 |}
23

private String name;
private int points;

S Eors Eructer
public Customer (StEring name;, aAnt points)
this.name=name;
this.poeoints=points;

}

public void ExecutePoints () {

{

//this is passed as the current object to the method
[/tte add 10 peoints to points and print the infe

priwEPaintbslinie (Ehis) ;

public void printPointsInfo (Customer c) {

c.points=c.points+10;// add 10 points to current total point

System.out.println ("Name: "+c.name) ;
System.out.println ("Current total points:

" EL PO TIES) 5

The this Keyword

Below is the testing part of the program from the previous slide

24 public static void main(String[] args) {

25 //Creating the customer object

26 Customer cus=new Customer ("Bryan", 75);

27 //print the customer's current info

28 System.out.println ("Customer Name: "“t+cus.name) ;

29 Systen..out.priof I n("CiiFrent poiais: "“Jtous . points).;

30 //passing the current customer to the printPointInfo method
31 [/ te add 10 peinls and output it.

32 cus.ExecutePoints () ;

33 } Output of the code:
34 }

2R & Console %

<terminated> Customer [Java Application] C:\Users\DELL\Docum

Customer Name: Brvyan
Current points: 75

Name: Bryan

Current total points: 85

Rg‘erences:

e This training document was prepared using some of the resources from
the CollegeBoard, including their AP Computer Science A course
page which can be found at the link below:

https://apcentral.collegeboard.org/courses/ap-computer-science-a?utm_source=chatgpt.com
https://apcentral.collegeboard.org/courses/ap-computer-science-a?utm_source=chatgpt.com

