AP CS A (Java) Training

Unit 2: Selection and lteration
Updated Curriculum (2025-2026)

24 A[gorithms with Selection and
Repetition
Learm‘ng O[jecti\?es:

e Represent patterns and algorithms that involve selection and
repetition found in everyday life using written language or diagrams.

BUTLD BLOCKS OF ALGORTTHMS

Algorithm is a step-by-step process to follow when completing a task or solving @
problem. Algorithms can tackle real world tasks, like making a peanut butter & jelly
sandwich, or they can make up parts of computer programs.

There are 3 main building
blocks for algorithms:
sequencing, repetition,
and selection. In this
lesson, we'll focus on how
algorithms use selection,
which involves decision
making and repetition,
which involves looping.

Looping

Sequencing

Repetition Selection

Decision
making

SEQUENCING

Sequencing is the order in which instructions are arranged and processed in
order to achieve a desired outcome.

For example, part of the process of getting dressed would involve putting on
your pants, putting on your socks, and putting on your shoes. If the order was
different ...for example putting on your shoes before your socks, you will have a
hard time geftting dressed.

Put on pants »| Put on socks » Put on shoes

oo
1

REPETITION

Repetition is when a process repeats itself until a desired outcome is reached.

For example: you are heading out on a road trip with no idea as to when you
will get there, so what do you do<¢ You ask your parents if you are there yet. You
keep asking until you arrive, at which point you are there and can exit the car.

(Start road trip \

Repeat until you arrive:
- Ask parents "Are we there
yet?"

Start road
trip

Have you
arrived?

Ask "Are we
there yet?"

/

Qou have arrived. Exit the car. /

Exit the car

SELECTION

Selection occurs when a decision on how to proceed needs to be made.

For example: it's time to leave for school, but before you do, you check to see if
it is raining. If it is raining outside, you will prepare for
the rain. Otherwise, if it's not raining, you will put Start preparing
your umbrella in your bag.

_ . . true
G it is raining outside: \ talse
- Put on raincoat Put on Raiﬁing | Put umbrella
- Open umbrella raincoat outside? in bag
Otherwise: *
- Put umbrella in bag Open
umbrella

\Leave for school / t—— P Leave for school |

The order in which sequencing, selection, and repetition are used contributes to the
outcome of the algorithm. Let’s look at an example algorithm that uses all three:

[1. Prepare your workspace. \
2. Review assignments.
3. Prioritize tasks:
e If atask is due tomorrow, move it to the top of the list.
e Otherwise, prioritize by difficulty or estimated time required.
4. Repeat until all assignments are completed:
o Read the instructions carefully.
o Work on the task until it's complete.
o Submit:
m [f the assignment is digital, upload to the required platform.
m Otherwise, place the completed work in your backpack.

5. Wrap up:
e Preview upcoming assignments.
6. Relax!

Sequence: The order of
the steps.

Prepare your workspace.
Review assignments.
Prioritize tasks:
e If atask is due tomorrow, move it to the top of the list.
e Otherwise, prioritize by difficulty or estimated time required.
Repeat until all assignments are completed:
o Read the instructions carefully.
o Work on the task until it's complete.
o Submit:
m [f the assignment is digital, upload to the required platform.
m Otherwise, place the completed work in your backpack.
Wrap up:
® Preview upcoming assignments.
Relax!

Selection: Decide if a fask is
prioritized and how to submit

each assignment.

Prepare your workspace.
Review assignments.
Prioritize tasks:
e If atask is due tomorrow, move it to the top of the list.]
e Otherwise, prioritize by difficulty or estimated time required.
Repeat until all assignments are completed:
o Read the instructions carefully.
o Work on the task until it's complete.
o Submit:
m [f the assignment is digital, upload to the required platform.
m Otherwise, place the completed work in your backpack.
Wrap up:
e Preview upcoming assignments.

Relax!
J

Prepare your workspace.

Repetition: Repeat a set of
actions until all of the
assignments are complete.

Review assignments.
Prioritize tasks:

e If atask is due tomorrow, move it to the top of the list.

e Otherwise, prioritize by difficulty or estimated time required.

Repeat until all assignments are completed:
o Read the instructions carefully.
o Work on the task until it's complete.
o Submit:

m [f the assignment is digital, upload to the required platform.
m Otherwise, place the completed work in your backpack. /

~

Wrap up:
e Preview upcoming assignments.
Relax!

J

SUMMARY

The building blocks of algorithms include sequencing, selection, and repetition.
e Algorithms can contain selection, through decision making, and repetition, via looping.

e Selection occurs when a choice of how the execution of an algorithm will proceed is based
on a true or false decision.

e Repetition is when a process repeats itself until a desired outcome is reached.

e The orderin which sequencing, selection, and repetition are used contributes to the outcome
of the algorithm.

2.2 Boolean Expressions

Learning Objectives:

e Develop code to create Boolean expressions with relational
operators and determine the result of these expressions.

[YPE BOOLEAN

* boolean: A logical type whose values are true and false.

— Itis legal to:
e create a boolean variable
e pAss a boolean value as a parameter
e refurn a boolean value from methods
e call a method that returns a boolean and use it as a test
— Example:
boolean loggedIn
boolean gameOver

false;
true;

e A boolean expression is a statement or expression that can be evaluated as true or false.

e Why is type boolean useful?
— Can capture a complex logical test result and use it later
— Can write a method that does a complex test and returns it
- Makes code more readable
— Can pass around the result of a logical test (as parameter/return)

RELATIONAL OPERATORS

Relational operators are used to compare the value
of two expressions. This is a full list of all the arithmetic
relational operators that can be used to evaluate
boolean expressions in Java.

Note that the == tests equality,
not the = . The =is used for the
assignment operator!

Operator Meaning Example Value
== £ |Isequalto 1+ 1 == true
1= does not equal 3.2 1= 2.5 true
< is less than 10 < 5 false
> is greater than 10 > 5 true
<= is less than or equal to 126 <= 100 false
>= is greater than or equal to 5.0 >= 5.0 true

VERY IMPORTANT: Although some programming languages allow using relational operators
like < to compare strings, Java only uses these operators for primitive data types. So these
operators do NOT work properly on String or any other object(reference) data typell

[MPORTANT DISTINCTION!

e Assignment Operator e Equality Operator
is used to assign a Is used fo check the
variable a value, use = whether two numbers are
- int x = 34; equal, use ==
- the integer variable x is - int x = 34;
assigned the value 34 X == 45;
- Checks whether the

value stored in x (34) is
equal to 45

USEFUL BOOLEAN EXPRESSIONS

// Test if a number 1s positive
boolean isPositive = number > 0

//Test i1f a number 1s negative
boolean isNegative = number < ©

//Test 1f a number 1is even by seeing 1f the remainder 1s © when divided by 2
boolean isEven = number % 2 ==

//Test 1f a number is odd by seeing if there is a remainder when divided by 2
boolean is0ddl = number % 2 ==
boolean is0dd2 = number % 2 > ©

//Test i1f a number is a multiple of x (or divisible by x with no remainder)
boolean isMultipleOfX = number % x == ©

REFERENCE COMPARISONS DIFFERENT OBJECT

Warning! Reference Comparisons can be Misleading!

Even though both t1 \
Rectangle rectl = new Rectangle(10,5); - and rect?2 %ove Theri(c]me
Rectangle rect2 = new Rectangle(10,5); values, they are NOT the
boolean testl = _ —_— - same object. testl
evaluates to false because
System.out.println(testl); they reference different

\ Rectangle objects /

width = 10

Rectangle rectl —— height = 5

width = 10

Rectangle rect2 —— height = 5

REFERENCE COMPARISONS SAME UBJECT

Warning! Reference Comparisons can be Misleading!

r
Now that rectl has been
Rectangle rectl = new Rectangle(10,5); T I |
Rectangle rect2 = rectil; ‘ evaluate true. Both rect1
boolean testl = pectl == rect2; —» true and rect2 point to the same

System.out.println(testl); _ Rectangle object. y

~

width = 10

height = 5

Rectangle rectl

-

Rectangle rect2

COMPARING STRINGS

This is why we use .equals() for Strings instead of ==
String literal = "Test!";
String strObject = new String("Test!");

System.out.println(literal == strObject); —p -

System.out.println(literal.equals(strObject)); —» | true

SUMMARY

Values or expressions can be compared using the relational operators == and != to determine
whether the values are the same. With primitive types, this compares the actual primitive
values. With reference types, this compares the object references.

e Numeric values or expressions can be compared using the relational operators (<, >, <=, >=) to
determine the relationship between the values.

e An expression involving relational operators evaluates to a boolean value of true or false.

e The remainder operator % can be used to test for divisibility by a number. For example,
num % 2 == @ can be used to test if a number is even.

2.3 j Statements

Learning Objectives:

e Develop code to represent branching logical processes by using
selection statements and determine the result of these processes.

LF STATEMENT FLOWCHART

Selection (one of the 3 basic logic
structures in algorithms) allows us to
choose different outcomes based
on the result of a decision/condition

We can use a flowchart to represent
algorithms that use selection. See
the example to the right

Note that the diamond in the
flowchart is referred to as a
decision diamond.

‘ Statement ‘
I —1 I I false I

Y

Statement or block of
statements run if true

Y

Statements to run after |(

HOW 1F-STATEMENTS WORK

if-statements are the lines of code you need to change the flow while you're program

is running. You can write code that makes a decision that determines if certain lines of
code should be run.

There are two basic parts to an if-statement.
1.A condition to be evaluated (A Boolean expression that evaluates to true or false)
2.Code that should run if the expression was true {enclosed in curly braces}

Syntax
if (condition) {
// block of code to be executed if the condition is true

}

Very Important Note: The if-statement does
NOT NEED to use {} when there is only one
line of code for the conditional statement.

WRITING IF STATEMENTS

e for if // An if statement

if (condition)
statements, statement:
always make sure
fhe condition 15 //An if statement with curly braces {}
encapsulated in if (condition) {
in open and statement;
closed }

parenthesis i // An if statement with multiple statements -- must use {}

. if (condition) {
{ } Is not statementl;
needed when statement2;

there is only one
line of code for

the conditional
statement

IF’SW[M[NT LXECUTION

int age =

If the boolean expression is true, the code in
11:(_) between the curly brackets will executel]
{

System.out.println(“You can vo{e!”);

int age = 11;

1f<_> —
{

System.out.println(“You can vote!”);

{ You can vote! }

(If the boolean expression is \

false, the code in between
the curly brackets will NOT
execute, and the program

will execute everything after

i |
\ the if statement!)

[F STATEMENT EXECUTION

Taking the previous example, we can see how this looks in this flowchart form.

True
Votel

Statement(s)
after if

[F/ELSE STATEMENT FLOWCHART

An if-else statement allows the
programmer to make a program |
have multiple branches or paths
depending on the value of a

boolean. @
Faies]

Statement |

false

Statement or block of Statement or block of
statements run if true statements run if false

Statements to run
after

HOW IF-ELSE STATEMENTS WORK

With an if-else statement you are giving an either-or command: either the lines of code
inside the if will execute or the lines inside the else will execute. Those are the opftions.

Inside the curly braces for the else clause you put lines of code that you want to run if
the Boolean condition from the if statement is false.

Some important notes about the else clause:

« The else must come immediately after the closing curly brace of an if statement

+ The else also has its own set of opening and closing curly braces to encapsulate
lines of code that will run if the if condition is false

Syntax
if (condition) {

// block of code to be executed if the condition is true
} else {

// block of code to be executed if the condition is false
}

WRITING
[F-EL5E
STATEMENTS

{ } isstill not
needed when
there is only one
line of code for
the conditional
statementl!

// An if-else statement
if (condition)
statement;
else
statement;

//An if-else statement with curly braces {}
if (condition) {

statement;
} else {

statement;

}

// An if-else statement with multiple statements
if (condition) {

statementl;
} else {

statementl;

statement2;

LF-STATEMENT EXECUTION

int age = | Ifthe boolean expression is true, the code in
if(age >= 18) between the if curly brackets will executel
{
System.out.println(“You can vote!”); ={ You can votel }
}
else
{
System.out.println(“Sorry, you can’t vote!”);
¥
int age = If the boolean expression is false, the code
11:(_) in the else curly brackets will executel!
{

System.out.println(“You can vote!”);

System.out.println(“Sorry, you can’t vote!”); ={

Sorry, you can’t vote! }

B Ee-

[F VS IF ELSE EXECUTION

Create Scanner

!

Age = user input

You can
Votel

Sorry, you
can't vote!

Program
Ends

By adding the else statement, we are removing
additional execution steps that would otherwise be
needed if we had two if statements back to back.

Create Scanner

.

Age = user input

Sorry, you
can't vote!

Program

)

You can
Vote!

Ends

SUMMARY

Selection statements change the sequential execution of statements.

e Anif statementis a type of selection statement that affects the flow of control by executing
different segments of code based on the value of a Boolean expression.

e A one-way selection (if statement) is used when there is a segment of code to execute under
a certain condition. In this case, the body is executed only when the Boolean expression is
true.

e if statements test a boolean expression and if it is tfrue, go on to execute the following
statement or block of statements surrounded by curly braces ({}) like below.

// A single 1f statement
if (boolean expression)
Do statement;

// A block if statement
if (boolean expression)
{

Do Statementl;

Do Statement2;

Do StatementN;

SUMMARY CONTINUED...

e Relational operators (==, !=, <, >, <=, >=) are used in boolean expressions to compare values and
arithmetic expressions.

o If statements can be followed by an associated else part to form a 2-way branch:
if (boolean expression)

{
Do statement;
}
else
{
Do other statement;
}

e A ftwo-way selection (if/else) is used when there are two segments of code—one to be
executed when the Boolean expression is true and another segment for when the Boolean
expression is false. In this case, the body of the if is executed when the Boolean expression is
true, and the body of the else is executed when the Boolean expression is false.

2.4 Nested if Statements

Learning Objectives:

e Develop code to represent nested branching logical processes and
determine the result of these processes.

MIS US [0 F IF ﬁhese are all separate if statements, so

they will each be checked separately

« What's wrong with the following code? one by one. So this will actually output:

int percent = 90; You got an A!

if (percent >= 90) { You got a B!
System.out.println("You got an Al"); You got a C!
} You got a D!
if (percent >= 80) {
System.out.println("You got a B!"); if statements and if-else statements
} allows us to compare one conditfion,
if (percent >= 70) { and choose a path between true and

System.out.println("You got a C!"); false which is great! But what if there

are more than two possible scenarios
for a particular conditione

}
if (percent >= 60) {

System.out.println("You got a D!");

} :

if (percent < 60) { else if statements allow us to
System.out.println("You got an F!"); incorporate additional conditions!!

}

HOW ELSE-TF WORKS

Not all conditions you want to check have only two possible outcomes. However a
computer can only check one true/false condition at a time. A multi-selection
statement is a statement that selects a single action from three or more
condifional statements based on which Boolean expression is true.

*You add an else-if clause to an if statement when you have another condition
you want to check.

*You can add as many else-ifs as you want.

*Each condition in an if-else-if is checked in order from top to bottom and the
final else clause is executed if all the previous conditions are false.
Syntax
if (condition1) {
// block of code to be executed i1f conditionl 1is true
} else if (condition2) {

// block of code to be executed if the conditionl is false and condition2 1is true
} else {

// block of code to be executed if the conditionl is false and condition2 1is false

}

WRITING ELSE-TF STATEMENTS

MUST start a conditional
with an if. else if and
else are opftional
additions that can be used

A conditional can only
have one if and else
statement, but can have
an unlimited number of
else if statements.

Adding an if statement to
an existing conditional
statement would just
create an addifional
condifional statement.

//A single if-else statement with curly braces {}
//NOTE: if only one statement, { } are not needed
if (condition)

{
}

else if (condition)

{

//statement or block of statements

//statement or block of statements

}

else

{
}

//statement or block of statements;

[MPORTANT NOTE ABOUT THE CONDITIONS!!

if(conditionl)
{

//executed if conditionl is true Will only be tested
} if the initial if

: e < statement is false

else if(condition2)
{

// executed if the conditionl is false and condition2 is true
}
else
{

//executed if all previous conditions are false

LLSE-TF STATEMENT FLOWCHART

I Statement I

Y

| Statement or block of | | Statement or block of | Statement or block of

statements statements statements

| | |
Y

| Statement or block of

statements

F/ELSE TF/ELSE EXAMPLE

int x = 10;

if (x > 9) {
System.out.println("Positive");

}

else if (x < 0) {
System.out.println("Negative");

}

else {
System.out.println("Zero");

}

Output:
Positive

F/ELSE TF/ELSE EXAMPLE

int x = 0;

if (x > 9) {
System.out.println("Positive");

}

else if (x < 0) {
System.out.println("Negative");

}

else {
System.out.println("Zero");

}

Output:
Zero

PATH EXECUTED FROM ELSE IF

— When an else if ends with , exactly one path must be taken.
if (test) {
statement(s);
} else if (test) {
statement(s);

— When an else if ends with else if, the code might not execute any path.
if (test) {
statement(s);
} else if (test) {
statement(s);
} else if (test) {
statement(s);

}

[F/ELSE/TF EXAMPLE

int place = 2;

if (place == 1) {
System.out.println("Gold medal!");

}

else if (place == 2) {
System.out.println("Silver medal!");
}

else if (place == 3) {

System.out.println("Bronze medal.");
}

Output:
Silver medal!

[F/ELSE/TF EXAMPLE

int place = 6;

if (place == 1) {
System.out.println("Gold medal!");

}

else if (place == 2) {
System.out.println("Silver medal!");
}

else if (place == 3) {

System.out.println("Bronze medal.");
}

Output:
No output.

Conditional(selection) statements all use boolean
expressions to decide whether to run certain pieces of
code. There are 4 ways conditionals can be used:

1. if by itself

o if-statements check if one boolean expression is true.

If it is, the code in the if runs. Otherwise the selection
block is skipped.

2. if followed by else
o if-else statements add the functionality that if the
condition is false it can still run some code.

3. if followed by else-if(s) and finally an else
o if-else if-else statements can check more than one
boolean expression. They will only run the code for
the first boolean expression that evaluates to true. If
none of the conditions are frue, the final else will run.

//if-statement
if(faveNum == 2){
System.out.println("two is blue");

}

//1f-else statement

if(faceNum == 2){
System.out.println("two is blue");

} else {
System.out.printin("you don't love two

}

$(")

//1f - else i1f(s) - else statement

if(faceNum == 2){
System.out.println("two is blue");

} else if(faveNum == 3){
System.out.println("three is free");

} else if(faveNum == 4){
System.out.println("four is adore");

} else {
System.out.println("you don't love two

1

H () I

4. if followed by else-if(s) and no else
o if-else if statements also heck more than one
boolean expression, but they do not use the final
else, so if none of the conditions are true, nothing
from the selection block will run.

//1f - else i1f(s) statement

if(faveNum == 2){
System.out.println("two is blue");

} else if(faveNum == 3){
System.out.println("three is free");

} else if(faveNum == 4){
System.out.println("four is adore");

}

NESTED i STATEMENTS

You can use nested if statements if there are multiple conditions, and one of
them depends on the other being true.

A nested if statement is an if statement that is placed within another if

statement.

if (condition)

[if (condition) }

else

. J

(,;f (condition)

~

_

(;f (condition) i\

else if

else

_ _J
else

/:; (condition)

else if

if (condition)

else

else

&

We can use nested if statements to allow the program
to check conditions within other conditions. In these
cases were redlly checking if multiple conditions are

true, such as checking if someone has enough money

for a movie ticket and an available movie time.

int num = 10;
if (num > 9) {
if (num < 15) {
System.out.println("Both true!");

if num > 9

true

if num < 15

true

"Both true!"

Example: A program that uses a nested if statement to check if a user’s password
meets the requirements: has at least 8 characters AND starts with the pound sign

-
System.out.println("Enter password: ");

String password = input.nextLine();
if (password.length() >= 8) {
if (password.startsWith("#")) {
System.out.println("Password accepted.");
} else {
System.out.println("Password must start with #.");

password:
CodeHSisKewl

}
} else {
System.out.println("Password needs 8 or more characters.");
)

Enter password: CodeHSisKewl
Passwords must start with #

Example: A program that uses a nested if statement to check if a user’s password
meets the requirements: has at least 8 characters AND starts with the pound sign

p)
System.out.println("Enter password: "); password:

?trlng password = input.nextLine(); #CodeHS
if (password.length() >= 8) {
if (password.startsWith("#")) {
System.out.println("Password accepted.");
} else {
System.out.println("Password must start with #.");
}
} else {
System.out.println("Password needs 8 or more characters.");

}

\. The if of the inner nested if statement

is only evaluated if the if of the outer
if statement evaluates to true.

Enter password: #CodeHS
Passwords needs 8 or more characters.

SUMMARY

e Nested if statements consist of if, if-else, or if-else-if statements within if, if-else, or
if-else-if statements.

e The Boolean expression of the inner nested if statement is evaluated only if the Boolean
expression of the outer if statement evaluates to true.

e A multi-way selection (if-else-if)is used // 3 way choice with else if
when there are a series of expressions with if (boolean expression)
different segments of code for each {

statementl;

}

else if (boolean expression)

condition. Multi-way selection is performed
such that no more than one segment of code
is executed based on the first expression that
evaluates to true. If no expression evaluates

statement2;
to true and there is a trailing else statement, }
then the body of the else is executed. else
{
statement3;

}

2.5 Compound Boolean Expressions

Learning Objectives:

e Develop code to represent compound Boolean expressions and
determine the result of these expressions.

EVALUATING LOGIC EXPRESSIONS

Sometimes it is useful to use nested if conditions: if statements within if statements.
// if x is odd
if(x % 2 1= 0){

// if x is positive

if(x > 0){

Other times it makes more sense to use logical operators to check multiple
condifions. We can combine the above nested if conditions using logical operators.

LOGICAL 0P
&b AND |

RATORS
AND |,

Logical Operator
AND

|
ge >= 13 &&

e ——
expnession 1 expression 2

Compound Boolean Expression

NOTE: the OR is made with two vertical "pipe"
characters. The "pipe" is on the keyboard with same
button as \ --it's right next to the key with }Jon it, just
above the Return/enter key.

N/

The logical operators -- also known as the Boolean Operators -- AND (&&), OR (| |) and NOT (!)
allow you to compare the results of more than one Boolean operation at a fime.

LOGICAL AND
oroct R <2

true && false - » false
false && true - » false

false &K false ---» false

LOGICAL OR

exprl ll expr2

true “ true - > true
true || false :..» true

false “ true L. » true

false || false --» false

LOGICAL NOT

' expr
-

| true ..o false

l false ---» true

SHORT CIRCUIT EVALUATION

Both && and | | use short circuit evaluation. That means that the second expression (on
the right of the operator) isn't necessarily checked, if the result from the first expression
is enough to tell if the compound boolean expression is true or false:

e When evaluating a logical or (| |) and the first expression is true, then the second
expression won't be executed, since only one needs to be true for the result to
be true.

I) is if first is true, and it's an OR (| |)then don't bother
true anything true evaluating second, the whole expression is true!

e When evaluatfing a logical and (&&) and the first expression is false, then the
second expression won't be executed. If the first expression is false, the result will
be false, since both sides of the && need to be true for the result to be true.

8& hi is if first is false, and it's an AND (&&) then don’t bother
anything evaluating second, the whole expression is false!

SHORT CIRCUIT EXAMPLE

Errors:

Dividing by 0 would crash the program!
BUT it doesn't in the following example due to

MyProgram.java: Line 8: You may be dividing by zero.

short circuit evaluation since the second expression is not evaluated by the computer!

int numSlices = 10;
int numPeople = 0;
false not evaluated

if(humPeople != 0 && rumSli-ces—/=humPReopie—>—0)
{

System.out.println(“There’s enough pizza!”);
} Output:
else “Not enough pizza.”
{

System.out.println(“Not enough pizza.”);

ORDER OF OPERATIONS IN JAVA o it

Precedence
First
Second

Third

Fourth

Fifth
Sixth

Seventh
Eighth

Ninth

Operator
()
++ -- ! (type)
* / %
+ -
< <= >= >
== 1=
&&
[
= 4= -= *= [= Y%=

Description
parenthesis
unary operators, logical not, typecasting

multiplication, division, modulus

addition, subtraction, string concatenation

relational operators for greater/lesser
relational operators for equality

logical and
logical or

assignment operator

SUMMARY

Logical operators ! (not), && (and), and || (or) are used with Boolean values.
e A && Bis true if both A and B are true.
e A || Bistrue if either AorB (or both) are true.
e !Aistrue ifAis false.

e ! has precedence (is executed before) && which has precedence over | |. Parentheses can
be used to force the order of execution in a different way.

e An expression involving logical operators evaluates to a Boolean value.

e Short-circuit evaluation occurs when the result of a logical operation using && or | | can be
determined by evaluating only the first Boolean expression. In this case, the second Boolean
expression is not evaluated. (If the first expression is true in an | | operation, the second
expression is not evaluated since the result is true. If the first expression is false in an &&
operation, the second expression is not evaluated since the result is false.)

2.0 Comparing Boolean Expressions

Learning Objectives:

e Compare equivalent Boolean expressions.

e Develop code to compare object references using Boolean
expressions and determine the result of these expressions.

[RUTH TABLES

A truth table is a table used to determine the truth values of a Boolean
expression. We can evaluate boolean statements using fruth tables.

Truth tables are a way of looking at all possible values of the variables, and
determining the value of the whole statement.

To evaluate a boolean expression using
truth tables:

>
>
0
Qo
o)

— Step 1: Write out all
combinations of the terms

— Step 2: Evaluate the logic
statement for each

combination of terms

m| M| 4|
LR ©

JLL I) R B

As our Boolean expressions become more complex, we may
need o find ways to make them easier to understand and make
our programs run more efficiently. De Morgan's Laws are a sef

of rules that describe how to simplify complex Boolean
expressions.

De Morgan’'s Laws '(A 28 B) | A || B

e Move the NOT (!) inside
e AND (&&) becomesOR (|])

e OR(]|)becomes AND (&&) !(A || B) !A && !B

You can also simplify Boolean expressions that have

relational operators like <, >, ==.

De Morgan's Laws

e Move the NOT (!) inside

e AND (&&) becomes OR (||)
e OR (||) becomes AND (&&)
e Flip the sign

I(x ==y)
I(x !=y)
l(x < y)
L(x > vy)
I(x <=Yy)
I(x >=vy)

l=y)
==Y)
>=Y)
<=Y)
>Y)
<Yy)

DE MORGANS EXAMPLE

Two software engineers have written these code segments to solve the same
problem. Is the first code segment equivalent to the second code segment?

e o e — i ———— — —— -
1 I (sara.getX() != 3 && sara.getY() != 5)

L e e e e e e e e e e e S E— — S— —— — —
e o o e — i —— —— — —— -
2 (sara.getX() == 3) || (sara.getY() == 5)

Yes! Using De Morgan’s we can distribute the outside I,
which flips the !=sign to == and && becomes | |

DE MORGAN S PRACTICE QUESTIONS

Using De Morgan’s Laws, what would be the equivalent of the expression below?
1. !(x >38& y<5) — x<=31||y»>=5

2. !(hasHeadlight || hasBikelight) — !hasHeadlight && !hasBikelight
3. I!(sum < 5 || !(num > ©)) — sum >= 5 &% num > O
4. 1('(num > @) || temp <=) & num > @ — num > @ & temp > © & num > @

5. !(num > @ || temp <= @) && !(num > 0 && temp <= 0)

— num <= © &% temp > © & & num <= O || temp > ©
6. !(!(num > @ || temp <= 9) || !(num > 0) && temp <= 0)

— num > @ || temp <= @ & num > © || temp > ©

PROPERTLES T0 CONSIDER

When determining logical equivalence of expressions consider the following
properties:

Distributive Property: A & (B || C€) = (A & B) || (A && C)

Associative Property: A && (B
De Morgan's Laws: (A && B)

|dentity Properties: A && true

&% C) = (A && B) && C
=IA|] !B and !(A || B) = 'A && !B

=A and A || false = A

DIFF R[N([BEHIND THE SCENES

Primitiv

int x = 30;

In memory:

30

DIFFERENCES BERIND THE SCENES

Objects in code:

Rectangle rect = new Rectangle(10, 2);

In memory: @address 10
rect
@address 2
height

UBJECT STORAGE

In memory, the variable simply stores a location or a reference to where
the actual object data is located.

The variable points to the object data.

variable name Obj ec't
—> Data

Qo—

COMPARING PRIMITIVES

With primitives, we can use == to compare
int x = 25;
int y = 25;
X y

X ==y returns true

COMPARING OBJECTS

With objects, == compares the pointers rather than the actual objects.

Rectangle one
Rectangle two

new Rectangle(3,7);
new Rectangle(3,7);

Memory Memory

one | Address 1 Address 2 / two

one == two returns false

COMPARING OBJECTS THAT ARE ALIASES

Two objects are considered aliases when they both reference the same object.
Comparing using == check whether two variables are aliases. Consider the Sprite class
we discussed in Unit 2 used to represent a game character.

public class Aliases{ . :
An alias is an object
public static void main(String[] args){ reference that refers

Sprite player = new Sprite(30, 50); fo the same object

as another variable.

Sprite another = player; Here player and

System.out.println(player == another); // true another are aliases.

}

Both object references player and another points to the same address hence the same
object in memory.

COMPARING OBJECTS THAT ARE NOT ALTASES

Two different objects can have the same afttributes/data.
public class Aliases2{
public static void main(String[] args){
Sprite player = new Sprite(30, 50);
Sprite another = new Sprite(30, 50);
System.out.println(player == another); // false
System.out.println(player != another); // true

}
}

The references player and another above are two different Sprite objects(created
individually using new) but both are located at the same coordinate.

FQUALS

We saw that for String objects, ==is used to check if the two String references point to the same
object whereas the equals method check if they have the same characters.

"hi";

new String("hi");

String a
String b

System.out.println(a == b); // false, different objects
System.out.println(a.equals(b)); // true

Later in Unit 5 when we write our own classes, it will be useful to implement the equals method for
our class to check whether two different objects are equivalent(same data values).

For example, consider Point objects with attributes x and y representing points on the plane.
Although the following two points are distinct programmatically, they are equivalent
mathematically. The equals method will allow us to detect this. More on this later.

Point a = new Point(3,4);

Point b = new Point(3,4);

System.out.println(a == b); // false, different objects
System.out.println(a.equals(b)); // true

EFERENCE EQUALLTY

new String("dog"); StP1CN¥jstr4
new String("dog"); o[(sKellleN=H!

new String("cat");
strl;

String strl =
String str2
String str3
String str4

// Print out the results of various equality checks

System.out.println(strl == str2); >

System.out.println(strl == str3); ,-

System.out.println(strl == str4); >

L0GLCAL EQUALLTY

new String("dog"); Strlchcistr4
new String("dog"); are aliases!

new String("cat");
strl;

String strl
String str2
String str3
String str4

// Print out the results of various equality checks using equals()

System.out.println(strl.equals(str2)); >

System.out.println(strl.equals(str3)); >

System.out.println(strl.equals(str4)); >

RECALL: THE COSMIC SUPERCLASS OBJECT

At the top of the hierarchy for every object is the Object class. This makes the Object class the
superclass of all other classes in Java. The Object class is part of the built in java.lang
package.

o Every class implicitly extends object ?bjed
equails
ﬂnlali:e

There are about 11 methods in the Object class that can be inherited 33;}'393,
by any object. We are going fo focus on 2 of these (both of which are notily.
included in the Java Quick Reference): Nt

o public String toString() W

Returns a text representation of the object, T
often so that it can be printed. We have seen Point
this in Unit 5. =

o public boolean equals(Object other) J“Stm

Compare the object to any other for equality. gty
Returns true if the objects have equal state. f,f;n?“”
translate

EXAMPLE: RECTANGLE EQUALS METHOD

Going back to our rectangle example, here is a possible equals method for a
Rectangle class. You can see that two rectangles are considered equal if they
have the same width and height.

// Checks if another Rectangle object
// has the same values for width and height
public boolean equals(Rectangle other)

{
}

SO now, when you use the equals method to compare rectangles one and two,
what's actually being compared are the attributes width and height, not the
memory addresses.

return other.getWidth() == width && other.getHeight() == height;

Rectangle rectl = new Rectangle(10,5);
Rectangle rect2 = new Rectangle(10,5);
boolean equalRects = rectl.equals(rect2); —pp| true

NULL

We can also use == with objects to determine if they actually reference an
object at all. We learned in previous lessons about the keyword null, which
indicates that an object has yet to be initialized(new keyword). We can
compare objects to the keyword null to determine if the object is actually
a reference to anything.

object == null //true if no reference object
//false if there is a reference object

public class stringchecker NULL EXCEPTION EXAMPLE

public static void main(String[] args) {
String strl = null; // strl is not initialized (it's null)
String str2 = "Computer Science"; // str2 is initialized with a string

// Check if last character of strl is "!"

if (stri.indexO0f("!") != -1) { // NullPointerException, strl is null
System.out.println("String ends with an exclamation!");

} else {
System.out.println("String DOES NOT end with an exclamation!");

}

// Check if last character of str2 is "!"

if (str2.indexOf("!") != -1) { // NO EXCEPTION, but only because str2 is not null
System.out.println("String ends with an exclamation!");

} else {

System.out.println("String DOES NOT end with an exclamation!");
}

public class stringchecker EXCEPTION FLXED EXAMPLE

public static void main(String[] args) {
String strl = null; // strl is not initialized (it's null)
String str2 = "Computer Science"; // str2 is initialized with a string

// Check if last character of strl is "!"

if (strl != null && stril.indexOf("!") != -1) { //NO EXCEPTION
System.out.println("String ends with an exclamation!");

} else {
System.out.println("String DOES NOT end with an exclamation!");

}

// Check if last character of str2 is "!"

if (str2 != null && str2.indexOf("!") != -1) { // NO EXCEPTION
System.out.println("String ends with an exclamation!");

} else {

System.out.println("String DOES NOT end with an exclamation!");
}

SUMMARY

Two Boolean expressions are equivalent if they evaluate to the same value in all cases. Truth
tables can be used to prove Boolean expressions are equivalent.

e De Morgan’s Laws can be applied to Boolean expressions to create equivalent ones:
I(a & b) isequivalentto 'a || 'b

I(a

|| b)isequivalentto !a && !b

e A negated expression with a relational operator can be simplified by flipping the relational
operator to its opposite sign.

I(c ==

I(c
I(c
I(c
I(c
I(c

d) isequivalenttoc !=d
1= d) is equivalent to ¢ ==

< d) is equivalentto c »>= d
> d) is equivalenttoc <= d
<= d) is equivalenttoc > d
>= d) is equivalenttoc < d

e Two different variables can hold references to the same object. Object references can be
compared using == and !=. (Two object references are considered aliases when they both
reference the same object.)

SUMMARY CONTINUED...

e Areference value can be compared with null, using == or ! =, to determine if the reference
actually references an object.

e A NullPointerException is thrown when you try to perform an operation (such as calling a
method or accessing a field) on an object that hasn't been initialized and is null

e Classes often define their own equals method, which can be used to specify the criteria for
equivalency for two objects of the class. The equivalency of two objects is most often
determined using attributes from the two objects.

2.7 while Loops

Learning Objectives:
e |denftify when an iterative process is required to achieve a desired
result.

e Develop code to represent iterative processes using while loops and
determine the result of these processes.

L00PS

A loop in programming, also called iteration or repetition, is a way to
repeat one or more statements. If you didn’t have loops to allow you to
repeat code, your programs would get very long very quickly!

Using a sequence of code, selection (ifs), and repetition (loops),
the control structures in programming, you can consfruct an algorithm
to solve almost any programming problem.

[TERATION FLOWCHART

Take out a pen and a blank sheet of
paper

Are there fewer
than 5 tallies on
your paper

FALSE

Add a tally to your paper

N

Put your pen down on your paper

Notice:

This conditional
statement loops back
on itself. As a result, the
conditional might be
evaluated multiple
times.

As a result, the same
command is running
multiple times.

The below flowchart contains a “loop” that runs “while” a condition
is true. How many times will the loop run? What is the output that
would be generated from the program?

int counter = 0;

System.out.println(“Hi”);
counter = counter + 1;

FALSE

System.out.println(“Done!”);

Output:
Hi!

Hi!

Hi!

Hi!

Hi!
Done!

The below flowchart contains a “loop” that runs “while” a condition
is true. How many times will the loop run? What is the output that
would be generated from the program?

int counter = 0;

Output:
The program

will print “Hi!”

and add 3 to the
FALSE counter

infinitely!

System.out.println(“Hi”);

3 ({3 |)J .
counter = counter + 3; System.out.println(“Done!”);

An infinite loop happens when code will cycle through a set of commands forever,
since the loop condition is always true. Infinite loops are almost always undesirable.

THE WHILE LOOP IN JAVA EXPLAINED

Syntax

while (condition) {
<instructions>

While the <condition» is true, the computer keeps repeating

the <instructions>.

e When the test condition is false, we exit the loop and continue
with the statements that are after the body of the while loop.

e If the conditionis false the first time you check it, the body of
the loop will not execute.

e Conceptually, awhile loop is very similar to an if conditional,

except that a while is contfinually executed until it's no longer

true and an if is only executed once.

Example
int 1 = 1;

while (i < 10) {

System.out.println(i);
i++;

}

That code will print out
the numbers 1 fo 9, and
then once i becomes 10
and is thus no longer less
than 10, the computer
will stop printing out the
value of i.

The previous example is simple but it shows the basic common structure of while
loops. Our code often starts off by initializing a variable (or more than one) before
the while, then references that variable (or a related one) in the condition, and
then modifies that variable in some way in the instructions.

RULE 1: Declare and inifialize your loop’s
conftrol variable

//Rule 1
int counter = 0;

RULE 2: Test your loop control variable /ﬁ’file 2 cer <16
with the condition you want to while (counter <=10)

e {
verify is sfill frue statementd;

statement2;

RULE 3: Update your variable. Note: .
failing to update the variable counter++; //Rule 3
inside the loop is probably the
most common mistake!

EAMPLE]

What is the value of count after the loop?
public class Main{

public static void main(String[] args)
{
// 1. initialize the loop variable
int count = 1;
// 2. test the loop variable
while (count <= 5){
System.out.println(count);
// 3. change/update the loop variable
count++;

Output:

vih WN R

Answer: 6

EXAMPLE /

What is the value of count after the loop?
public class Main{

public static void main(String[] args)
{
// 1. initialize the loop variable
int count = 1;
// 2. test the loop variable
while (count <= 5){
// 3. change/update the loop variable
count++;
System.out.println(count);

Output:

oulh whNiN

Answer: 6

NOTE: Curly braces mark the body of methods, loops,
RI.‘-I N G HI[[0 0 PS and conditional blocks. They are not necessary if the

body or the block consists of only one statement.

e for while // A while statement

statements, always | Rk
! statement;
make sure the ’

condition Is o //A while statement with curly braces {}
Clalele[eNVlleiiCleNIaRIaM N /hile (condition) {

open and closed statement;
parenthesis () }

without curly { } // A while statement with multiple statements -- must use {}
braces to denote while (condition) {

a while loop body, statementl;
by default the statement2;
body only :
contains one

statement.

BREAK STATEMENTS

int counter =

while(true) =—

{

9;

if(counter == 5)
{

break;
} ~__
counter++;

(&

while(true) will

cause the loop to run

forever, because the
condition is always
true.

J

I

The break statement
allows us to exit the
while loop and

program.

continue executing the

J

Writing while(true) will make
a program run infinitely.

We can terminate while loops
by adding a break statement.

Break statements allow you to
halt the execution and break
out of the while loop.

This will then execute
statements that follow once
the while loop terminates.

while (count > 0)

B A VS R "'U N We can also halt the execution of a loop by
KE K [R using the return keyword

public static void passwordCheck(String s) public static void passwordCheck(String s)
{ {
Scanner input = new Scanner(System.in); Scanner input = new Scanner(System.in);
while(true) while(true)
{ {
if(s.equals("strongPassword")) if(s.equals("strongPassword"))
{ {
break; return;
} }
System.out.println("Weak password, try again"); System.out.println("Weak password, try again");
s = input.nextLine(); s = input.nextLine();
}
System.out.println("Next line of code"); System.out.println("Next line of code");
} }

This line of code will not execute
because the return statement exits
the method or constructor regardless

of what code follows the return

statement or the while loop

This line of code will execute because
the break statement ends the while

loop and continues to the next line of
code following the while loop

BREAK VS. RETURN

The break statement will exit only the return statement will immediately exit
the loop, other code after the loop the entire method, it will NOT run the other
will still execute. code in the method. Also if its a non-void

method, it can also return a value as well.

/method \ /method \

i loop h loop

break; return;
_ Wy,

~

other code
vEEEED) ||« -

Whether or not the programmer uses break or return statements will depend on
the situation and the desired behavior.

y

SUMMARY

Iteration statements (loops) change the flow of control by repeating a segment of code zero
or more times as long as the Boolean expression controlling the loop evaluates to true.
lteration is a form of repetition.

e Loops often have a loop control variable that is used in the boolean condition of the loop.
Remember the 3 steps of writing a loop:
o (Step 1) Initialize the loop variable
o (Step 2) Test the loop variable
o (Step 3) Update the loop variable

e Awhile loop is a type of iterative statement. In while loops, the Boolean expression is
evaluated before each iteration of the loop body, including the first. When the expression
evaluates to true, the loop body is executed. This continues until the Boolean expression
evaluates to false, whereupon the iteration terminates.

e The loop body of an iterative statement will not execute if the Boolean expression initially
evaluates to false.

SUMMARY (CONTINUED...)

An infinite loop occurs when the Boolean expression in an iterative statement always
evaluates to true.

e Off by one errors occur when the iteration statement loops one time too many or one time too
few.

e Input-controlled loops often use a sentinel value that is input by the user like “bye” or -1 as the
condition for the loop to stop. Input-controlled loops are not on the AP CSA exam, but are
very useful to accept data from the user.

e break is akeyword used to break out of a loop and executes statements that immediately
follow the loop.

e return is akeyword used in methods to return a value back to the initial program that called
the method.

2.8 for Loops

Learning Objectives:

e Develop code to represent iterative processes using for loops and
determine the result of these processes.

WHILE LOOP RECAP: 3 PARTS

e A counting variable set to an

int steps = 0; initial value
e A Boolean expression which
while(steps < 4){ checks the condition of that
System.out.println(“hi”); variable
steps++; e A statement which increases or
}s decreases the variable that is

being checked.

o Note: if this piece is missing,
you may create an infinite
loop that never stops
running, or crashes your
browser!

A for loop combines these three paris
into one statement

Any variable name can be used
here. It's most common to use i.

A loop is iteration: a repetitive portion of an
algorithm which repeats a specified number of
times or until a given condition is met.

[HE FOR LOOP IN JAVA EXPLAINED

Syntax
I the is referred to as
for (statement 1; statement 2; statement 3) { <+ | the loop header
<instructions>
}

Statement 1 is executed (one time) before the execution of the code block. It is often
referred to as the initialization, because it initializes the counter variable to a starting value.
This counter variable is used throughout the loop and keeps track of the current repetition,
and is typically named i.

Statement 2 defines the condition for executing the code block. The condition part tells the
computer whether to keep repeating or not. The computer evaluates the condition each
time, and if the expression is frue, it executes the inside instructions. If not, it exits the loop
entirely.

Statement 3 is executed (every time) after the code block has been executed. It is often an
increment/decrement which modifies the counter variable after each repetition.

C

A for loop consists of three parts:
e Declaring and initializing a loop control variable
Step 1. Condition that must be true to run the loop
Step 2. Commands(body of the loop) to run
Step 3. Updating of the loop control variable

This is only done ONLY once before

This is evaluated first fo check
if you will go into the loop.

the first evaluation of the condition.

\ Cstep 1D

for (int number = 0}| number < 5j numbeP++j{

//commands to run

} Glep D

Update the control
variable after the
body of the loop is

Execute the body of the loop after evaluating the condition is true

executed.

LOOP TRACING A FOR LOOP EXAMPLE

int sum = 0;

for(int i = @ i <= 20; i += 5){

sum += i;
}

System.out.println(sum);

(RRRRE

50

OFF BY ONE 10OP EXAMPLE

When a for loop iterates one too few or one too many times, it's referred to as
an off by one error.

When we run the code below, it only prints 1-9, this is because loop incorrectly
doesn't include the value 10 in the boolean expression. This is an example of an
Off by One Error, because it doesn’t account for the additional number.

This program is meant to countfrom 1 - 10

for(int i = 1; i < 10; i++)

{
System.out.println(i);

}

OooNOTUVTE, WNPR

FOR 100P VS WHILE L0O?

For Loop

3.b) If false

3.a) If true
1. 2. 6.

4 for (initialization ; condition ; Updation)

// body of the loop
/| statements to be executed

}

L > /| statements outside the loop

The for loop should be used if you know the amount of
times you want something to execute, the for loop can
repeat instructions a specific number of times.

While Loop

3.b) If false

3.a) If true
1. 2.

L» while (condition)
4. {

-

// body of the loop
/| statements to be executed

5. Spdation
}

— /| statements outside the loop

The while loop should be used if you want
something to execute as long as a
certain condition is true.

CATEGORTES OF LOOPS

indefinite(undetermined) loop: One where the number of tfimes its body repeats is not
known in advance.

 Prompt the user until they type a non-negative number.

e Print random numbers until a prime number is printed.

* Repeat until the user types "q" to quit.
The while loop is usually used for indefinite loops.

definite(predetermined) loop: Executes a known number of tfimes.
e Print "hello” 10 times.
e Find all the prime numbers up to an integer n.
e Print each odd number between 5 and 127.
In this lecture, we will see that a for loop is often used to implement a definite loop.

FOR VS WHILE

Write a loop to compute thesum: 1 + 2 + 3 + ... + 99 + 100
int sum = 0;
int number = 1;
while(number <= 100){
sum += number;
number++;
} Both for and while loops can
be used to solve this problem.
int sum = 0;
for(int i = 1; i <= 100; i++){
sum += 1ij;

FOR V. WHILE

Although for and while loop can generally be intferchangeable. It is best practice to
use a for loop as a definite loop where the beginning and termination of the loop is well
defined.

for(int i = 1; i <= 100; i++){
System.out.println(i);

This for loop executes 100 times. It is a definite loop. It is usually better to use a for loop
as a definite loop.

FOR V. WHILE

If the termination condition of a loop is less well defined, use a while loop. For example,
suppose you require a positive integer input from the user. The following will loop until a

positive number is entered.

Scanner inp = new Scanner(System.in); Sample Output:
System.out.print("Enter a positive number:"); Enter a positive
int x = inp.nextInt(); Enter a positive

Enter a positive
Enter a positive

while(x <= 0){ Thank you!

System.out.print("Enter a positive number:");
X = inp.nextInt();

}
System.out.print("Thank you!");

number:
number:
number:
number:

This while loop executes an unknown number of times since you don't know when the

user will enter a positive number. It is a indefinite loop. It is better to use a while loop

here.

SUMMARY

A forloop is a type of iterative statement. There are three parts in a for loop header: the
initialization (of the loop control variable or counter), the Boolean expression (testing the loop
variable), and the update (to change the loop variable).

e In aforloop, the initialization statement is only executed once before the first Boolean
expression evaluation. The variable being initialized is referred to as a loop control variable.

e The forloop Boolean expression is evaluated immediately after the loop control variable is
initialized and then followed by each execution of the increment (or update) statement until it
is false.

e In each iteration of the for loop, the update is executed after the entire loop body is executed
and before the Boolean expression is evaluated again.

e A forloop can be rewritten into an equivalent while loop (and vice versa).

e Off by One Error happens when a for loop iteration is off by one too many or one too few.

2.9 [mplementing Oelection and Iteration
Algorithms

Learning Objectives:

e Develop code for standard and original algorithms (without data
structures) and determine the result of these algorithms.

BASIC LOOP ALGORITHMS

Important basic algorithms that use loops:
1) Compute a sum of a series(list of numbers)

2) Determine the frequency with which a specific criterion is met(for
example, divisibility)
3) ldentify the individual digits in an integer

We will do an example of each of the above.

LOMPUTE A'SUM

Write a loop to compute the sum: 1+2+3+ ... +99+ 100
int sum = 0;

int number = 1;
while(number <= 100){

sum += number;
number++;

cumulative sum: A variable that keeps a sum in progress and is updated
repeatedly until summing is finished.

— The sum in the above code computes a cumulative sum.

DETERMINE FREQUENCY

Write a loop to determine how many numbers from 1327 to 4542 that are
mulfiples of 3 but not multiples of 5.

int count = 0;
int num = 1327;
while(num <= 4542){
if(num % 3 == 0 & num % 5 != 0){
count++;

}

num++;

LATRACTING DIGITS

Code that can extract digits from a number is useful (last four digits of a social security
number, whether digits form a valid credit card number)

The trick is to repeatedly modulo 10 and integer divide by 10. For example:
int num = 1347;
int ones = num % 10; // extract the last digit: 7
num /= 10; // remove the last digit, num = 134
int tens = num % 10; // extract the last digit: 4
num /=10; // remove the last digit again, num = 13
int hundreds = num % 10; // extract the last digit: 3
num /= 10; // num = 1
int thousands = num % 10; // 1

LATRACTING DIGITS

For numbers of arbitrary lengths, we can use a while loop to implement the previous
algorithm!

Scanner console = new Scanner(System.in);
System.out.print("Enter number: ");
int number = console.nextInt();
while(number != 0){
// extract last digit
System.out.println(number % 10);
number /= 10; // remove last digit

Output:
) Enter a number: 2348
8

N W DB

2.40 Implementing String Algorithms

Learning Objectives:

e Develop code for standard and original algorithms that involve
strings and determine the result of these algorithms.

STRING TRAVERSAL |+~ s o | v e

e

String traversing is the process of going through a String one character at a time,

often using loops! The substring() method is particularly useful when attempting to
traverse Strings. We can traverse Strings using loops, here's an example:

//Prints each character in a String on a new line
String print = "Print Me!";

Isolates each
for(int i = 0; i < print.length(); i++) character of the
{

String print

System.out.println(print.substring(i, i+1))s

}

Im’(lollze irhe print.length() = 9, but Strings start We want to increase i by 1
variable i fo : . .

0 since the atindex @. We puti < print.length() to access each character

. . | T
first index is 8 so i only goes up to the last index! individually

2 3 4 5 6 7 8

INDEXQUTOFBOUNDS _E

r

i |n |t M (e |!

If we were to make i <= print.length(), we would get an IndexOutofBounds
Error, because we are aftempting to access a String index that does not exist.

//Prints each character in a String on a new line
String print = "Print Me!";

for(int i = 0; i <= print.length(); i++)
{

}

System.out.println(print.substring(i, i+1));

The fix: when traversing make sure you use either:
e 1i < string.length()
or
e i <= string.length() - 1

when i = 9, then the
condition

i <= print.length()
is true since the length
59,509 <= 9is true.
But, then when trying to
substring(9, 10) will
give an error since
there's no such index 9
that we can return a
substring for.

STRING ALGORITHMS: FOR LOOPS

Loops allow us to do String traversals. Suppose we want to know the number of
spaces in a String.

public static int countSpaces(String str){
int count = 0;
for(int i = 9; i < str.length(); i++){
if(str.substring(i, i + 1).equals(" "))
count++;

}

return count;

STRING ALGORITHMS: FOR LOOPS

Assume that a given String is a sequence of words separated by spaces, return
the number of words. Use countSpaces.

public static int numOfWords(String str){
return countSpaces(str) + 1;

REVERSING A STRING

Create a method that reverses the order of a String:
public static String reverse(String string)

{

String newString = "";
for(int i = string.length() - 1; i >= 0; i--)
{

String character = string.substring(i, i+1);
newString += character;

}

return newString;

REMOVE SPACES (WHILE)

Given a string, return the string with all of its spaces removed.
We will do this first with a while loop.
One way to do this is to use a while |loop with indexO+.

public static String removeSpacesl(String str){
while(str.indexOf(" ") != -1){
int indexSpace = str.indexOf(" ");
String first = str.substring(@, indexSpace);
String second = str.substring(indexSpace + 1);
str = first + second; // first space removed

}

return str;

REMOVE SPACES (FOR)

Given a string, return the string with all of its spaces removed.

We now implement this with a for loop. Start with an empty string. Then examine every
letter and if it is NOT a space, add it to the string. This builds up the String one letter at a
time but avoids the spaces. For some students, this may be easier to understand and
write then the previous while loop version.
public static String removeSpacesl(String str){
String ans = "";
for(int i = 9; i < str.length(); i++){
String letter = str.substring(i, i+1);
if(!letter.equals(" "))
ans += letter;

}

return ans;

PALINDROME

Given a string, return whether the string is a palindrome (reads the same forward as
backwards).

public static boolean isPalindrome(String str){
int len = str.length();

for(int i = 0; i < len; i++){
String current = str.substring(i, i + 1);
String opposite = str.substring(len - 1 - i, len - 1i);
if(!current.equals(opposite))
return false;

}

return true;

Can we make the code slightly more efficiente

[MPROVED PALINDROME

We can go just to the middle of the String.
public static boolean isPalindrome(String str){

int len = str.length();

for(int 1 = 0; 1 < len/2; i++){
String current = str.substring(i, i + 1);
String opposite = str.substring(len - 1 - i, len - 1i);
if(!current.equals(opposite))

return false;

}

return true;

ALTERNATE PALINDROME

Assuming the method reverse() is defined.
public static boolean isPalindrome(String str){
String reverse = reverse(str);
if(str.equals(reverse))
return true;
return false;

CHARAT EXAMPLE

You can also use charAt(index) to access individual characters in a String. The
following code prints each character on a separate line.

Code:
String name = "CodeHS";
for (int 1 = @; i < name.length(); i++)
{
System.out.println(name.charAt(i));
}
Output:

wWIMmaAaoon

SUMMARY

e Loops can be used to fraverse or process a string.

e There are standard algorithms that uftilize String traversals to:
o Find if one or more substrings has a particular property
o Determine the number of substrings that meet specific criteria
o Create a new string with the characters reversed

2.414 Nested [teration

Learning Objectives:

e Develop code to represent nested iterative processes and determine
the result of these processes.

N [ST E D |.00 PS [XAM PL[1 Putfing a lci:%ﬁ)leirgi.?ssﬁ:;mer 00p is

for(int line = 1; line < 6; line++)

{

| line-1 |

for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");

}
System.out.println();

NESTED LOOPS EXAMPLE |

for(int line = 1; 1ine < 6; line++)
{ | lne-1 |
for(int number ;

= 1; number < 6; number++)
{

System.out.print(number*line + " ");
}
System.out.println();

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{

[line = 1][number‘=1]

for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");

}
System.out.println();

NESTED LOOPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ Ciie-s) (D
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");

}
System.out.println();

}

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ line = 1 number = 1
[J)
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
} [number*line = 1]
System.out.println();
}

NESTED L00OPS EXAMPLE 1

for(int line = 1; line < 6; line++)

{ [line = 1][number‘=2]
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

The inner loop needs
to finish executing

BEFORE the outer
loop moves to the
next iteration!

NESTED LOOPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ Ciie-s) (D
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");

}
System.out.println();

}

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ line = 1 number = 2
[J)
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
} [number*line = 2]
System.out.println();
}

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ [line = 1][number‘=3]
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

NESTED LOOPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ e) (D
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ [line = 1][number‘=3]
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
} [number*line = 3]
System.out.println();
}

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ [line = 1][number‘=4]
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

NESTED LOOPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ i) (S
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ line = 1 number = 4
[J)
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
} [number*line = 4]
System.out.println();
}

1 2 3 4

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ [line = 1][number‘=5]
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

1 2 3 4

NESTED LOOPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ e) (D
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

1 2 3 4

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ [line = 1][number‘=5]
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
} [number*line = 5]
System.out.println();
}

1 2 3 4 5

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ [line = 1][number‘=6]
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

1 2 3 4 5

NESTED LOOPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ Cies)
for(int number = 1; [NDERIREE; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

1 2 3 4 5

NESTED L00OPS EXAMPLE 1

for(int line = 1; line < 6; line++)

{

[line =

for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");

}
System.out.println();

1 2 3 4 5
Now we exit the for loop and move to

the code that directly follows the inner

loop. In this case, we are adding a
printin() statement so that the next line
of code printed to the console is on a

new line.

NESTED L00OPS EXAMPLE 1

for(int line = 1; line < 6; line++)

{ | line-=1 | |]

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " "); number no longer exists

because the inner for

t . loop finished executing!
System.out.println();

1 2 3 4 5

NESTED L00OPS EXAMPLE 1

for(int line = 1; line < 6; line++)

{ | line-=1 | |]

for(int number = 1; number < 6; number++)

{
System.out.print(number*line + " "); number no longer exists
because the inner for
t loop finished executing!
System.out.println();
number++;
} ‘\\\\\ 1 2 3 4 5

Errors:

MyProgram.java: Line 16: You may have forgotten to declare
number or it's out of scope.

NESTED L00OPS EXAMPLE 1

for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}
System.out.println();

line =2 | |]

Now the outer loop finally

increments, increasing the
value of line

1 2 3 4 5

NESTED LOOPS EXAMPLE |

for(int line = 1; 1ine X'6; line++)

{ Comne=2 |
for(int number ;

= 1; number < 6; number++)
{

System.out.print(number*line + " ");
}
System.out.println();

1 2 3 4 5

NESTED L00OPS EXAMPLE 1

for(int line = 1; line < 6; line++)

{ [line = 2][number‘=1]

for(int number = 1; number < 6; number++)

{

Since the first line of code in the outer
o %713 non .
System.out.print(number*line +); for loop is another for loop, we

} re-initialize number and set its value to

System.out.println(); 1, and the whole process begins again!
}

1 2 3 4 5

NESTED LOOPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ T2) (S
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

1 2 3 4 5

NESTED LOOPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ [line = 2] [number = 1]
for(int number = 1; number < 6; number++)
The new value of
{ line is used in the

inner for loop

System.out.print(number*line + " "); [rumber1 2 |
number*line =

}
System.out.println();

1 2 3 4 5

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ [line = 2][number‘=2]
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

1 2 3 4 5

NESTED LOOPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ 2) (D
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

1 2 3 4 5

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ line = 2 number = 2
[J)
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
} [number*line = 4]
System.out.println();
}

N R
AN

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ [line = 2][number‘=3]
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

N R
AN

NESTED LOOPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ T2) (D
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

N R
AN

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ [line = 2][number‘=3]
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
} [number*line = 6]
System.out.println();
}

N B
AN
A W

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ [line = 2][number‘=4]
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

N B
AN
A W

NESTED LOOPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ T2) (D
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

N
AN
o W

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ line = 2 number = 4
[J)
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
} [number*line = 8]
System.out.println();
}

N B
AN
A W

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ [line = 2][number‘=5]
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

N B
AN
A W

NESTED LOOPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ 2) (D
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

N
AN
o W

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ [line = 2][number‘=5]
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
} [number*line = 10]
System.out.println();
}

o0 b

N
AN
o W
= U
()

NESTED L0OPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ [line = 2][number‘=6]
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

o0 b

N
AN
o W
= U
()

NESTED LOOPS EXAMPLE |

for(int line = 1; line < 6; line++)

{ T :)
for(int number = 1; [NDERIREE; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}

o0 b

N R
AN
o w
=
®

NESTED L00OPS EXAMPLE 1

for(int line = 1; line < 6; line++)

{ [line=2][
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}
1 2 3 4 5
2 4 6 8 10

Skips to next line

NESTED L00OPS EXAMPLE 1

for(int line = 1; line < 6; line++)

{ [line = 3][
for(int number = 1; number < 6; number++)
{
System.print(number*line + “ ”’);
}
System.out.println();
}
Now that the outer for loop has 2 i Z g ie
completed, it returns to the 3 6 9 12 15

increment, and increases the value

of line by 1. This process repeats
each time until the value of line is
greater than or equal to 6.

NESTED L00OPS EXAMPLE 1

for(int line = 1; line < 6; line++)

{ [line = 4] [
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}
Now that the outer for loop has ; i Z g ie
completed, it returns to the 3 6 9 12 15
increment, and increases the value 4 8 12 16 20

of line by 1. This process repeats
each time until the value of line is
greater than or equal to 6.

NESTED L00OPS EXAMPLE 1

for(int line = 1; line < 6; line++)

{ [line = 5] [
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}
Now that the outer for loop has ; i Z g ie
completed, it returns to the 3 6 9 12 15
increment, and increases the value 4 8 12 16 20
of line by 1. This process repeats 5 10 15 20 25
each time until the value of line is

greater than or equal to 6.

Note: the entire inner loop runs for each

N[SHD lOOPS [XAMP[[1 iteration of the outer loop.

for(int line = 1; [INCHGNE; line++)

{ [)
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}
System.out.println();
}
1 2 3 4 5
2 4 6 8 10
3 6 9 1215
Program stops! 4 8 12 16 20
5 10 15 20 25

NESTED L00OPS EXAMPLE 1

for(int line = 1; line < 6; line++)

{
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + " ");
}

System.out.println();

The a nested loop will run is

calculated by the number of iterations in the inner loop

* iterations of the outer loop. This can be a helpful
calculation when trying to figure out what to set your
for loop increment and boolean conditions to.

Runs 25
fimes totall

NESTED L0OPS

« Having a loop inside a loop is what is referred to as nested loops

Important facts:

e the inner loops runs as many times as
the outer loop runs

e the inner loop must finish for the next
iteration in the outer loop to occur

Let’s look at more examples...

Outer
Loop

for (int row = 1; row <= 3; row++)
{
for (int col = 1; col <= 5; col++)
Inner {
Loop System.out.print("*");

}
System.out.printIn();

}

VARIABLE SCOPE

Variable scope refers to where in a program a variable can be accessed or used. A
variable declared inside a method or block {} only exists and can be used within
that method or block.

int outsideloop;

for(int outer = 0; outer < 5; outer++)

{
//code
for(int inner = 0; inner < 5; inner++)
{
//code As stated earlier, it's very important to pay attention
} to the placement of variables in your program,
} especially as we continue to add control structures

//code that have different levels of variable access.

Because the variable outsideLoop is outside of both loops and
is executed prior to the rest of the code, outsideLoop can be
used in both for loops, and in any code that follows both for

loops.

int outsideloop;
for(int outer = 0@; outer < 5; outer++)

{
//code
for(int inner = @; inner < 5; inner++)
{
//code
t
}

//code

The variable outer is initialized in the outer for loop, and can

only be used within the brackets of the outer for loop. Because
the inner for loop is inside of the outer for loop, the variable

outer can be used in the inner for loop.

int outsideloop;
for(int outer= 0; outer<5; outer++)

{
//code
for(int inner= ©@; inner<5; inner++)
{
//code
h
}

//code

VARIABLE SCOPE

int outsideloop;

The variable inner can be used only between the brackets
that enclose the inner for loop. If the variable inner is used
outside of the inner for loop, an error will occur.

for(int outer= 0; outer<5; outer++)

for(int inner= ©; inner<5; inner++)

{
//code
{
//code
}
}

//code

Here are two examples of nesting using while loops, and a while/for loop combinafion.
This is the same times table problem that we just solved, just written using different
control structures.

Nested While Loops

int line = 1;
while(line < 6)
{

int number = 1;

while(number < 6)

{
System.out.print(number*line + “ ”’);
number++;

}

System.out.println()

line++;

Nested While/For Loops

int line = 1;
while(line < 6)

{
for(int number = 1; number < 6; number++)
{
System.out.print(number*line + “ »);
}
System.out.println()
line++;
}

SUMMARY

e Nested iteration statements are iteration statements that appear in the body of another
iteration statement.

e When aloop is nested inside another loop, the inner loop must complete all its iterations
before the outer loop can continue.

242 Informal Run-Time Analysis

Learning Objectives:

e Calculate statement execution counts and informal run-fime
comparison of iterative statements.

MEASURING ALGORITHM PERFORMANCE

The absolute running time of an algorithm can't be predicted since this depends on
the:

Programming language

Computer

Other programs running at the same time
The quality of the operating system

and many other factors.

A basic approach that we can take, is the Statement Execution Count(the number of
times a statement is executed by the program). This suggests that we can count the
number of instructions that algorithm has to execute. Once we know how many fimes
a piece of code executes, we can have a relative way to compare 2 or more
algorithms for efficiency. Algorithms with lower execution counts are likely to be more
efficient.

LAAMPLE ALGORITHM

Execution Count

public void computeSum () 13
{

int sum = 0; First instruction executes oncel

int n = 10; — Second instruction executes oncel!

for (int i = 0; i < n; i++)

{

sum += i; «— Third instruction executes N times!(in this case 10)
}
System.out.println(sum);._ Fourth instruction executes once!

[FYOU HAVE...iF STATEMENTS

if (
{

}

else

{

condition)

sequence of statements

sequence of statements

OR

For conditional statements,
either sequence 1 will
execute, or sequence 2 will

execute. So the count will
include one of the 2
statement counts.

[FYOU HAVE. .. For L00PS

for (int i = initial; i < n; i++)

{
sequence of |[statements
}
If the increment of a for
initial n Execution count loop Is ++, the execution
0 10 10 - 0 = 10 count is (n - initial)

[FYOU HAVE. . .NESTED L0OPS

for (int i = initial; i < n; i++)

{
for (j = init2; j < m; j++)
{ For nested loops, the
sequence of statements execution count is
} (n - initial) * (M - init2)
}
initial n init2 m Execution count
0 10 0 5 (16 - @) * (5 - @) = 50

4 8 1 4 (8 - 4) * (4 - 1) =12

SOME EXAMPLES

What's the total number of x++ operationse

int x = 0;

for(int 1 = 0; 1 < 10; i++){
X++;

}

for(int j = 1; j <= 15; j++){
X++3

}

Answer: 10 + 15 =25

SOME EXAMPLES

What's the total number of x++ operations?
int x = 0;
for(int i = 0; 1 < 10; i++){
for(int j = 0; j < 15; j++)
X++;

Answer: 10 * 15 =150

SUMMARY

A statement execution count indicates the number of times a statement is executed by the
program. Statement execution counts are often calculated informally through tracing and
analysis of the iterative statements.

e A frace table can be used to keep track of the variables and their values throughout each
iteration of the loop.

e The number of times a loop executes can be calculated by largestval - smallestval + 1
where these are the largest and smallest values of the loop counter variable possible in the
body of the loop.

e The number of times a nested for-loop runs is the number of times the outer loop runs fimes the
number of times the inner loop runs.

e In non-rectangular loops, the number of fimes the inner loop runs can be calculated with the
sum of natural numbers formula n(n+1)/2 where n is the number of times the outer loop runs or
the maximum number of times the inner loop runs.

