
AP CS A (Java) Training
Unit 2: Selection and Iteration
Updated Curriculum (2025-2026)

● Represent patterns and algorithms that involve selection and
repetition found in everyday life using written language or diagrams.

2.1 Algorithms with Selection and
Repetition

Learning Objectives:

Build Blocks of Algorithms
Algorithm is a step-by-step process to follow when completing a task or solving a
problem. Algorithms can tackle real world tasks, like making a peanut butter & jelly
sandwich, or they can make up parts of computer programs.

There are 3 main building
blocks for algorithms:
sequencing, repetition,
and selection. In this
lesson, we’ll focus on how
algorithms use selection,
which involves decision
making and repetition,
which involves looping.

Sequencing

SelectionRepetition
Decision
making Looping

Put on pants Put on socks Put on shoes

Sequencing is the order in which instructions are arranged and processed in
order to achieve a desired outcome.

For example, part of the process of getting dressed would involve putting on
your pants, putting on your socks, and putting on your shoes. If the order was
different …for example putting on your shoes before your socks, you will have a
hard time getting dressed.

Sequencing

Repetition is when a process repeats itself until a desired outcome is reached.

For example: you are heading out on a road trip with no idea as to when you
will get there, so what do you do? You ask your parents if you are there yet. You
keep asking until you arrive, at which point you are there and can exit the car.

Repetition

Start road trip

Repeat until you arrive:
- Ask parents "Are we there

yet?"

You have arrived. Exit the car.

Start road
trip

Have you
arrived?

Exit the car

Ask "Are we
there yet?"

true

false

Selection occurs when a decision on how to proceed needs to be made.

For example: it's time to leave for school, but before you do, you check to see if
it is raining. If it is raining outside, you will prepare for
the rain. Otherwise, if it’s not raining, you will put
your umbrella in your bag.

Selection

If it is raining outside:
- Put on raincoat
- Open umbrella

Otherwise:
- Put umbrella in bag

Leave for school

Raining
outside?

Put on
raincoat

Open
umbrella

Put umbrella
in bag

Leave for school

true false

Start preparing

1. Prepare your workspace.
2. Review assignments.
3. Prioritize tasks:

● If a task is due tomorrow, move it to the top of the list.
● Otherwise, prioritize by difficulty or estimated time required.

4. Repeat until all assignments are completed:
○ Read the instructions carefully.
○ Work on the task until it’s complete.
○ Submit:

■ If the assignment is digital, upload to the required platform.
■ Otherwise, place the completed work in your backpack.

5. Wrap up:
● Preview upcoming assignments.

6. Relax!

The order in which sequencing, selection, and repetition are used contributes to the
outcome of the algorithm. Let’s look at an example algorithm that uses all three:

1. Prepare your workspace.
2. Review assignments.
3. Prioritize tasks:

● If a task is due tomorrow, move it to the top of the list.
● Otherwise, prioritize by difficulty or estimated time required.

4. Repeat until all assignments are completed:
○ Read the instructions carefully.
○ Work on the task until it’s complete.
○ Submit:

■ If the assignment is digital, upload to the required platform.
■ Otherwise, place the completed work in your backpack.

5. Wrap up:
● Preview upcoming assignments.

6. Relax!

Sequence: The order of
the steps.

1. Prepare your workspace.
2. Review assignments.
3. Prioritize tasks:

● If a task is due tomorrow, move it to the top of the list.
● Otherwise, prioritize by difficulty or estimated time required.

4. Repeat until all assignments are completed:
○ Read the instructions carefully.
○ Work on the task until it’s complete.
○ Submit:

■ If the assignment is digital, upload to the required platform.
■ Otherwise, place the completed work in your backpack.

5. Wrap up:
● Preview upcoming assignments.

6. Relax!

Selection: Decide if a task is
prioritized and how to submit
each assignment.

1. Prepare your workspace.
2. Review assignments.
3. Prioritize tasks:

● If a task is due tomorrow, move it to the top of the list.
● Otherwise, prioritize by difficulty or estimated time required.

4. Repeat until all assignments are completed:
○ Read the instructions carefully.
○ Work on the task until it’s complete.
○ Submit:

■ If the assignment is digital, upload to the required platform.
■ Otherwise, place the completed work in your backpack.

5. Wrap up:
● Preview upcoming assignments.

6. Relax!

Repetition: Repeat a set of
actions until all of the
assignments are complete.

Summary
● The building blocks of algorithms include sequencing, selection, and repetition.

● Algorithms can contain selection, through decision making, and repetition, via looping.

● Selection occurs when a choice of how the execution of an algorithm will proceed is based
on a true or false decision.

● Repetition is when a process repeats itself until a desired outcome is reached.

● The order in which sequencing, selection, and repetition are used contributes to the outcome
of the algorithm.

● Develop code to create Boolean expressions with relational
operators and determine the result of these expressions.

2.2 Boolean Expressions
Learning Objectives:

Type boolean
• boolean: A logical type whose values are true and false.

– It is legal to:
• create a boolean variable
• pass a boolean value as a parameter
• return a boolean value from methods
• call a method that returns a boolean and use it as a test

– Example:
boolean loggedIn = false;

boolean gameOver = true;

• A boolean expression is a statement or expression that can be evaluated as true or false.

• Why is type boolean useful?
– Can capture a complex logical test result and use it later
– Can write a method that does a complex test and returns it
– Makes code more readable
– Can pass around the result of a logical test (as parameter/return)

Relational Operators
Relational operators are used to compare the value
of two expressions. This is a full list of all the arithmetic
relational operators that can be used to evaluate
boolean expressions in Java.

Operator Meaning Example Value
== is equal to 1 + 1 == 2 true

!= does not equal 3.2 != 2.5 true

< is less than 10 < 5 false

> is greater than 10 > 5 true

<= is less than or equal to 126 <= 100 false

>= is greater than or equal to 5.0 >= 5.0 true

Note that the == tests equality,
not the = . The = is used for the
assignment operator!

VERY IMPORTANT: Although some programming languages allow using relational operators
like < to compare strings, Java only uses these operators for primitive data types. So these
operators do NOT work properly on String or any other object(reference) data type!!

Important Distinction!
• Assignment Operator

is used to assign a
variable a value, use =
– int x = 34;
– the integer variable x is

assigned the value 34

• Equality Operator
is used to check the
whether two numbers are
equal, use ==
– int x = 34;

x == 45;

– Checks whether the
value stored in x (34) is
equal to 45

Useful Boolean Expressions
// Test if a number is positive
boolean isPositive = number > 0

//Test if a number is negative
boolean isNegative = number < 0

//Test if a number is even by seeing if the remainder is 0 when divided by 2
boolean isEven = number % 2 == 0

//Test if a number is odd by seeing if there is a remainder when divided by 2
boolean isOdd1 = number % 2 == 1
boolean isOdd2 = number % 2 > 0

//Test if a number is a multiple of x (or divisible by x with no remainder)
boolean isMultipleOfX = number % x == 0

Reference Comparisons Different Object
Warning! Reference Comparisons can be Misleading!

Rectangle rect1 = new Rectangle(10,5);

Rectangle rect2 = new Rectangle(10,5);

boolean test1 = rect1 == rect2;

System.out.println(test1);
false

Even though both rect1
and rect2 have the same
values, they are NOT the

same object. test1
evaluates to false because

they reference different
Rectangle objects

width = 10

height = 5

width = 10

height = 5

Rectangle rect1

Rectangle rect2

Reference Comparisons Same Object
Warning! Reference Comparisons can be Misleading!

Rectangle rect1 = new Rectangle(10,5);

Rectangle rect2 = rect1;

boolean test1 = rect1 == rect2;

System.out.println(test1);
true

Now that rect1 has been
assigned to rect2, test1 will

evaluate true. Both rect1
and rect2 point to the same

Rectangle object.

Rectangle rect1

Rectangle rect2

width = 10

height = 5

Comparing Strings
This is why we use .equals() for Strings instead of ==

String literal = "Test!";

String strObject = new String("Test!");

System.out.println(literal == strObject);

System.out.println(literal.equals(strObject)); true

false

Summary
● Values or expressions can be compared using the relational operators == and != to determine

whether the values are the same. With primitive types, this compares the actual primitive
values. With reference types, this compares the object references.

● Numeric values or expressions can be compared using the relational operators (<, >, <=, >=) to
determine the relationship between the values.

● An expression involving relational operators evaluates to a boolean value of true or false.

● The remainder operator % can be used to test for divisibility by a number. For example,
num % 2 == 0 can be used to test if a number is even.

● Develop code to represent branching logical processes by using
selection statements and determine the result of these processes.

2.3 if Statements
Learning Objectives:

If statement Flowchart
● Selection (one of the 3 basic logic

structures in algorithms) allows us to
choose different outcomes based
on the result of a decision/condition

● We can use a flowchart to represent
algorithms that use selection. See
the example to the right

Note that the diamond in the
flowchart is referred to as a

decision diamond.

Statement

Condition

Statement or block of
statements run if true

Statements to run after

true
false

How If-statements work
if-statements are the lines of code you need to change the flow while you're program
is running. You can write code that makes a decision that determines if certain lines of
code should be run.

There are two basic parts to an if-statement.
1.A condition to be evaluated (A Boolean expression that evaluates to true or false)
2.Code that should run if the expression was true {enclosed in curly braces}

Syntax
if (condition) {
 // block of code to be executed if the condition is true
}

Very Important Note: The if-statement does
NOT NEED to use { } when there is only one
line of code for the conditional statement.

Writing if Statements
// An if statement
if (condition)

statement;

//An if statement with curly braces {}
if (condition) {

statement;
}

// An if statement with multiple statements -- must use {}
if (condition) {

statement1;
statement2;

.

.

.
}

● for if
statements,
always make sure
the condition is
encapsulated in
in open and
closed
parenthesis ()

● { } is not
needed when
there is only one
line of code for
the conditional
statement

If-statement Execution
int age = 19;

if(age >= 18)

{

System.out.println(“You can vote!”);

}

If the boolean expression is true, the code in
between the curly brackets will execute!

You can vote!

int age = 11;

if(age >= 18)

{

System.out.println(“You can vote!”);

}

If the boolean expression is
false, the code in between
the curly brackets will NOT
execute, and the program

will execute everything after
the if statement!

if Statement Execution

age >= 18

You can
Vote!

Statement(s)
after if

True

False

Taking the previous example, we can see how this looks in this flowchart form.

if/else statement Flowchart
An if-else statement allows the
programmer to make a program
have multiple branches or paths
depending on the value of a
boolean.

Statement

Condition

Statement or block of
statements run if true

Statements to run
after

true

Statement or block of
statements run if false

false

How If-Else Statements work
With an if-else statement you are giving an either-or command: either the lines of code
inside the if will execute or the lines inside the else will execute. Those are the options.
Inside the curly braces for the else clause you put lines of code that you want to run if
the Boolean condition from the if statement is false.

Some important notes about the else clause:
• The else must come immediately after the closing curly brace of an if statement
• The else also has its own set of opening and closing curly braces to encapsulate

lines of code that will run if the if condition is false

Syntax
if (condition) {
 // block of code to be executed if the condition is true
} else {
 // block of code to be executed if the condition is false
}

Writing
if-else
Statements

// An if-else statement
if (condition)

statement;
else

statement;

//An if-else statement with curly braces {}
if (condition) {

statement;
} else {

statement;
}

// An if-else statement with multiple statements
if (condition) {

statement1;
} else {

statement1;
statement2;

.

.
}

{ } is still not
needed when
there is only one
line of code for
the conditional
statement!!

If-statement Execution
int age = 19;
if(age >= 18)
{
 System.out.println(“You can vote!”);
}
else
{

System.out.println(“Sorry, you can’t vote!”);
}

If the boolean expression is true, the code in
between the if curly brackets will execute!

You can vote!

int age = 11;
if(age >= 18)
{
 System.out.println(“You can vote!”);
}
else
{

System.out.println(“Sorry, you can’t vote!”);
}

If the boolean expression is false, the code
in the else curly brackets will execute!

Sorry, you can’t vote!

if vs if else Execution

age < 18

Sorry, you
can’t vote!

Program
Ends

True

age >= 18

You can
Vote!

True

Age = user input

Create Scanner

False

False

By adding the else statement, we are removing
additional execution steps that would otherwise be
needed if we had two if statements back to back.

Sorry, you
can’t vote!

Program
Ends

age >= 18

You can
Vote!

True

Age = user input

Create Scanner

False

vs

Summary
● Selection statements change the sequential execution of statements.
● An if statement is a type of selection statement that affects the flow of control by executing

different segments of code based on the value of a Boolean expression.
● A one-way selection (if statement) is used when there is a segment of code to execute under

a certain condition. In this case, the body is executed only when the Boolean expression is
true.

● if statements test a boolean expression and if it is true, go on to execute the following
statement or block of statements surrounded by curly braces ({}) like below.

// A single if statement
if (boolean expression)
 Do statement;
// A block if statement
if (boolean expression)
{
 Do Statement1;
 Do Statement2;
 ...
 Do StatementN;
}

Summary continued…
● Relational operators (==, !=, <, >, <=, >=) are used in boolean expressions to compare values and

arithmetic expressions.

● If statements can be followed by an associated else part to form a 2-way branch:
if (boolean expression)
{
 Do statement;
}
else
{
 Do other statement;
}

● A two-way selection (if/else) is used when there are two segments of code—one to be
executed when the Boolean expression is true and another segment for when the Boolean
expression is false. In this case, the body of the if is executed when the Boolean expression is
true, and the body of the else is executed when the Boolean expression is false.

● Develop code to represent nested branching logical processes and
determine the result of these processes.

2.4 Nested if Statements
Learning Objectives:

• What's wrong with the following code?
int percent = 90;

if (percent >= 90) {
 System.out.println("You got an A!");
}
if (percent >= 80) {
 System.out.println("You got a B!");
}
if (percent >= 70) {
 System.out.println("You got a C!");
}
if (percent >= 60) {
 System.out.println("You got a D!");
}
if (percent < 60) {
 System.out.println("You got an F!");
}
...

Misuse of if These are all separate if statements, so
they will each be checked separately
one by one. So this will actually output:

 You got an A!
You got a B!
You got a C!
You got a D!

if statements and if-else statements
allows us to compare one condition,

and choose a path between true and
false which is great! But what if there
are more than two possible scenarios

for a particular condition?

else if statements allow us to
incorporate additional conditions!!

How else-if Works
Not all conditions you want to check have only two possible outcomes. However a
computer can only check one true/false condition at a time. A multi-selection
statement is a statement that selects a single action from three or more
conditional statements based on which Boolean expression is true.

•You add an else-if clause to an if statement when you have another condition
you want to check.

•You can add as many else-ifs as you want.
•Each condition in an if-else-if is checked in order from top to bottom and the
final else clause is executed if all the previous conditions are false.
Syntax
if (condition1) {
 // block of code to be executed if condition1 is true
} else if (condition2) {
 // block of code to be executed if the condition1 is false and condition2 is true
} else {
 // block of code to be executed if the condition1 is false and condition2 is false
}

Writing else-if Statements
//A single if-else statement with curly braces {}
//NOTE: if only one statement, { } are not needed
if (condition)
{

//statement or block of statements
}
else if (condition)
{

//statement or block of statements
}
else
{

//statement or block of statements;
}

● MUST start a conditional
with an if. else if and
else are optional
additions that can be used

● A conditional can only
have one if and else
statement, but can have
an unlimited number of
else if statements.

● Adding an if statement to
an existing conditional
statement would just
create an additional
conditional statement.

Important Note about the conditions!!
if(condition1)

{

//executed if condition1 is true

}

else if(condition2)

{

 // executed if the condition1 is false and condition2 is true

}

else

{

//executed if all previous conditions are false

}

Will only be tested
if the initial if

statement is false

Else-if Statement Flowchart
Statement

Condition

Statement or block of
statements

true false

Condition

Statement or block of
statements

Statement or block of
statements

Statement or block of
statements

truefalse

if/else if/else Example
int x = 10;
if (x > 0) {

System.out.println("Positive");
}
else if (x < 0) {

System.out.println("Negative");
}
else {

System.out.println("Zero");
}

Output:
Positive

if/else if/else Example
int x = 0;
if (x > 0) {

System.out.println("Positive");
}
else if (x < 0) {

System.out.println("Negative");
}
else {

System.out.println("Zero");
}

Output:
Zero

Path executed from else if
– When an else if ends with else, exactly one path must be taken.

if (test) {
 statement(s);
} else if (test) {
 statement(s);
} else {
 statement(s);
}

– When an else if ends with else if, the code might not execute any path.
if (test) {
 statement(s);
} else if (test) {
 statement(s);
} else if (test) {
 statement(s);
}

if/else/if Example
int place = 2;
if (place == 1) {

System.out.println("Gold medal!");
}
else if (place == 2) {

System.out.println("Silver medal!");
}
else if (place == 3) {

System.out.println("Bronze medal.");
}

Output:
Silver medal!

if/else/if Example
int place = 6;
if (place == 1) {

System.out.println("Gold medal!");
}
else if (place == 2) {

System.out.println("Silver medal!");
}
else if (place == 3) {

System.out.println("Bronze medal.");
}

Output:
No output.

Conditional(selection) statements all use boolean
expressions to decide whether to run certain pieces of
code. There are 4 ways conditionals can be used:
1. if by itself

○ if-statements check if one boolean expression is true.
If it is, the code in the if runs. Otherwise the selection
block is skipped.

2. if followed by else
○ if-else statements add the functionality that if the

condition is false it can still run some code.

3. if followed by else-if(s) and finally an else
○ if-else if-else statements can check more than one

boolean expression. They will only run the code for
the first boolean expression that evaluates to true. If
none of the conditions are true, the final else will run.

4. if followed by else-if(s) and no else
○ if-else if statements also heck more than one

boolean expression, but they do not use the final
else, so if none of the conditions are true, nothing
from the selection block will run.

Nested if statements
You can use nested if statements if there are multiple conditions, and one of
them depends on the other being true.

A nested if statement is an if statement that is placed within another if
statement.

if (condition)

else

if (condition)

else if

else

if (condition)

else

if (condition)

if (condition)

else if

else

if (condition)

else

We can use nested if statements to allow the program
to check conditions within other conditions. In these
cases were really checking if multiple conditions are

true, such as checking if someone has enough money
for a movie ticket and an available movie time.

int num = 10;

if (num > 9) {

 if (num < 15) {

 System.out.println("Both true!");

 }

}

if num < 15

"Both true!"

true

true

if num > 9

System.out.println("Enter password: ");

String password = input.nextLine();

if (password.length() >= 8) {

 if (password.startsWith("#")) {

 System.out.println("Password accepted.");

 } else {

 System.out.println("Password must start with #.");

 }

} else {

 System.out.println("Password needs 8 or more characters.");

}

password:
CodeHSisKewl

Example: A program that uses a nested if statement to check if a user’s password
meets the requirements: has at least 8 characters AND starts with the pound sign

CodeHSisKewlEnter password:

Passwords must start with #

System.out.println("Enter password: ");

String password = input.nextLine();

if (password.length() >= 8) {

 if (password.startsWith("#")) {

 System.out.println("Password accepted.");

 } else {

 System.out.println("Password must start with #.");

 }

} else {

 System.out.println("Password needs 8 or more characters.");

}

password:
#CodeHS

Example: A program that uses a nested if statement to check if a user’s password
meets the requirements: has at least 8 characters AND starts with the pound sign

#CodeHSEnter password:

Passwords needs 8 or more characters.

The if of the inner nested if statement
is only evaluated if the if of the outer
if statement evaluates to true.

Summary
● Nested if statements consist of if, if-else, or if-else-if statements within if, if-else, or

if-else-if statements.

● The Boolean expression of the inner nested if statement is evaluated only if the Boolean
expression of the outer if statement evaluates to true.

● A multi-way selection (if-else-if) is used
when there are a series of expressions with
different segments of code for each
condition. Multi-way selection is performed
such that no more than one segment of code
is executed based on the first expression that
evaluates to true. If no expression evaluates
to true and there is a trailing else statement,
then the body of the else is executed.

// 3 way choice with else if

if (boolean expression)

{

 statement1;

}

else if (boolean expression)

{

 statement2;

}

else

{

 statement3;

}

● Develop code to represent compound Boolean expressions and
determine the result of these expressions.

2.5 Compound Boolean Expressions
Learning Objectives:

Evaluating logic expressions
Sometimes it is useful to use nested if conditions: if statements within if statements.
// if x is odd

if(x % 2 != 0){

// if x is positive

if(x > 0){

…
}

}

Other times it makes more sense to use logical operators to check multiple
conditions. We can combine the above nested if conditions using logical operators.

Logical operators
 && and || and !
The logical operators -- also known as the Boolean Operators -- AND (&&), OR (||) and NOT (!)
allow you to compare the results of more than one Boolean operation at a time.

NOTE: the OR is made with two vertical "pipe"
characters. The "pipe" is on the keyboard with same
button as \ -- it's right next to the key with }]on it, just
above the Return/enter key.

Logical NOTLogical ORLogical AND

Short Circuit Evaluation
Both && and || use short circuit evaluation. That means that the second expression (on
the right of the operator) isn’t necessarily checked, if the result from the first expression
is enough to tell if the compound boolean expression is true or false:

● When evaluating a logical or (||) and the first expression is true, then the second
expression won’t be executed, since only one needs to be true for the result to
be true.

● When evaluating a logical and (&&) and the first expression is false, then the
second expression won’t be executed. If the first expression is false, the result will
be false, since both sides of the && need to be true for the result to be true.

true anything|| is true

anythingfalse && is false if first is false, and it’s an AND (&&) then don’t bother
evaluating second, the whole expression is false!

if first is true, and it’s an OR (||)then don’t bother
evaluating second, the whole expression is true!

int numSlices = 10;

int numPeople = 0;

if(numPeople != 0 && numSlices / numPeople > 0)

{

System.out.println(“There’s enough pizza!”);

}

else

{
System.out.println(“Not enough pizza.”);

}

Short Circuit Example

false not evaluated

Output:

“Not enough pizza.”

Dividing by 0 would crash the program!
BUT it doesn't in the following example due to
short circuit evaluation since the second expression is not evaluated by the computer!

Order of Operations in Java
Precedence Operator Description

First () parenthesis

Second ++ -- ! (type) unary operators, logical not, typecasting

Third * / % multiplication, division, modulus

Fourth + - addition, subtraction, string concatenation

Fifth < <= >= > relational operators for greater/lesser

Sixth == != relational operators for equality

Seventh && logical and

Eighth || logical or

Ninth = += -= *= /= %= assignment operator

! is evaluated before &&
&& is evaluated before ||

Summary
● Logical operators ! (not), && (and), and || (or) are used with Boolean values.

● A && B is true if both A and B are true.

● A || B is true if either A or B (or both) are true.

● !A is true if A is false.

● ! has precedence (is executed before) && which has precedence over ||. Parentheses can
be used to force the order of execution in a different way.

● An expression involving logical operators evaluates to a Boolean value.

● Short-circuit evaluation occurs when the result of a logical operation using && or || can be
determined by evaluating only the first Boolean expression. In this case, the second Boolean
expression is not evaluated. (If the first expression is true in an || operation, the second
expression is not evaluated since the result is true. If the first expression is false in an &&
operation, the second expression is not evaluated since the result is false.)

● Compare equivalent Boolean expressions.

● Develop code to compare object references using Boolean
expressions and determine the result of these expressions.

2.6 Comparing Boolean Expressions
Learning Objectives:

A truth table is a table used to determine the truth values of a Boolean
expression. We can evaluate boolean statements using truth tables.
Truth tables are a way of looking at all possible values of the variables, and
determining the value of the whole statement.

To evaluate a boolean expression using
truth tables:

– Step 1: Write out all
combinations of the terms

– Step 2: Evaluate the logic
statement for each
combination of terms

A B A && B

T T T

T F F

F T F

F F F

Truth Tables

As our Boolean expressions become more complex, we may
need to find ways to make them easier to understand and make
our programs run more efficiently. De Morgan's Laws are a set

of rules that describe how to simplify complex Boolean
expressions.

!(A && B)

!(A || B)

!A || !B

!A && !B

De Morgan's Laws
● Move the NOT (!) inside

● AND (&&) becomes OR (||)

● OR (||) becomes AND (&&)

You can also simplify Boolean expressions that have
relational operators like <, >, ==.

De Morgan's Laws
● Move the NOT (!) inside

● AND (&&) becomes OR (||)

● OR (||) becomes AND (&&)

● Flip the sign

!(x == y) (x != y)

!(x != y) (x == y)

!(x < y) (x >= y)

!(x > y) (x <= y)

!(x <= y) (x > y)

!(x >= y) (x < y)

Two software engineers have written these code segments to solve the same
problem. Is the first code segment equivalent to the second code segment?

!(sara.getX() != 3 && sara.getY() != 5)

(sara.getX() == 3) || (sara.getY() == 5)

1

2

De morgan’s Example

Yes! Using De Morgan’s we can distribute the outside !,
which flips the != sign to == and && becomes ||

Using De Morgan’s Laws, what would be the equivalent of the expression below?
1. !(x > 3 && y < 5)

2. !(hasHeadlight || hasBikelight)

3. !(sum < 5 || !(num > 0))

4. !(!(num > 0) || temp <= 0) && num > 0

5. !(num > 0 || temp <= 0) && !(num > 0 && temp <= 0)

6. !(!(num > 0 || temp <= 0) || !(num > 0) && temp <= 0)

De morgan’s Practice Questions
→ x <= 3 || y >= 5

→ !hasHeadlight && !hasBikelight

→ sum >= 5 && num > 0

→ num > 0 && temp > 0 && num > 0

→ num <= 0 && temp > 0 && num <= 0 || temp > 0

→ num > 0 || temp <= 0 && num > 0 || temp > 0

Properties to consider
When determining logical equivalence of expressions consider the following
properties:

● Distributive Property: A && (B || C) ≡ (A && B) || (A && C)

● Associative Property: A && (B && C) ≡ (A && B) && C

● De Morgan's Laws: !(A && B) ≡ !A || !B and !(A || B) ≡ !A && !B

● Identity Properties: A && true ≡ A and A || false ≡ A

Difference Behind the Scenes
Primitives in code:

int x = 30;

In memory:

 x

30

width

height

Objects in code:

Rectangle rect = new Rectangle(10, 2);

In memory: @address

 rect

Differences Behind the Scenes

@address

10

2

A memory address is stored in
the variable with objects!

Object Storage
In memory, the variable simply stores a location or a reference to where
the actual object data is located.

The variable points to the object data.

variable name Object
Data ●

Comparing Primitives
With primitives, we can use == to compare

int x = 25;

int y = 25;

 x y

 ==

x == y returns true

25 25

Comparing Objects
With objects, == compares the pointers rather than the actual objects.

Rectangle one = new Rectangle(3,7);

Rectangle two = new Rectangle(3,7);

one two
Memory

Address 1
Memory

Address 2

one == two returns false

==

Comparing Objects that are Aliases
Two objects are considered aliases when they both reference the same object.
Comparing using == check whether two variables are aliases. Consider the Sprite class
we discussed in Unit 2 used to represent a game character.

public class Aliases{

 public static void main(String[] args){

 Sprite player = new Sprite(30, 50);

 Sprite another = player;

 System.out.println(player == another); // true

 }

}

Both object references player and another points to the same address hence the same
object in memory.

An alias is an object
reference that refers
to the same object
as another variable.
Here player and
another are aliases.

Comparing Objects that are NOT aLiases
Two different objects can have the same attributes/data.

public class Aliases2{

 public static void main(String[] args){

 Sprite player = new Sprite(30, 50);

 Sprite another = new Sprite(30, 50);

 System.out.println(player == another); // false

 System.out.println(player != another); // true

 }

}

The references player and another above are two different Sprite objects(created
individually using new) but both are located at the same coordinate.

equals
We saw that for String objects, == is used to check if the two String references point to the same
object whereas the equals method check if they have the same characters.

String a = "hi";

String b = new String("hi");

System.out.println(a == b); // false, different objects

System.out.println(a.equals(b)); // true

Later in Unit 5 when we write our own classes, it will be useful to implement the equals method for
our class to check whether two different objects are equivalent(same data values).

For example, consider Point objects with attributes x and y representing points on the plane.
Although the following two points are distinct programmatically, they are equivalent
mathematically. The equals method will allow us to detect this. More on this later.

Point a = new Point(3,4);

Point b = new Point(3,4);

System.out.println(a == b); // false, different objects

System.out.println(a.equals(b)); // true

Reference Equality
String str1 = new String("dog");

String str2 = new String("dog");

String str3 = new String("cat");

String str4 = str1;

// Print out the results of various equality checks

System.out.println(str1 == str2);

System.out.println(str1 == str3);

System.out.println(str1 == str4);

false

false

true

str1 and str4
are aliases!

String str1 = new String("dog");

String str2 = new String("dog");

String str3 = new String("cat");

String str4 = str1;

// Print out the results of various equality checks using equals()

System.out.println(str1.equals(str2));

System.out.println(str1.equals(str3));

System.out.println(str1.equals(str4));

Logical Equality

false

true

true

str1 and str4
are aliases!

Recall: The Cosmic SuperClass Object
At the top of the hierarchy for every object is the Object class. This makes the Object class the
superclass of all other classes in Java. The Object class is part of the built in java.lang
package.

○ Every class implicitly extends Object

There are about 11 methods in the Object class that can be inherited
by any object. We are going to focus on 2 of these (both of which are
included in the Java Quick Reference):

○ public String toString()
Returns a text representation of the object,
often so that it can be printed. We have seen
this in Unit 5.

○ public boolean equals(Object other)
Compare the object to any other for equality.
Returns true if the objects have equal state.

// Checks if another Rectangle object
// has the same values for width and height
public boolean equals(Rectangle other)
{

return other.getWidth() == width && other.getHeight() == height;
}

Example: Rectangle Equals Method
Going back to our rectangle example, here is a possible equals method for a
Rectangle class. You can see that two rectangles are considered equal if they
have the same width and height.

So now, when you use the equals method to compare rectangles one and two,
what’s actually being compared are the attributes width and height, not the
memory addresses.

Rectangle rect1 = new Rectangle(10,5);
Rectangle rect2 = new Rectangle(10,5);
boolean equalRects = rect1.equals(rect2); true

Null
We can also use == with objects to determine if they actually reference an
object at all. We learned in previous lessons about the keyword null, which
indicates that an object has yet to be initialized(new keyword). We can
compare objects to the keyword null to determine if the object is actually
a reference to anything.

object == null //true if no reference object

 //false if there is a reference object

Null Exception examplepublic class StringChecker {
 public static void main(String[] args) {
 String str1 = null; // str1 is not initialized (it's null)
 String str2 = "Computer Science"; // str2 is initialized with a string

 // Check if last character of str1 is "!"
 if (str1.indexOf("!") != -1) { // NullPointerException, str1 is null
 System.out.println("String ends with an exclamation!");
 } else {
 System.out.println("String DOES NOT end with an exclamation!");
 }

 // Check if last character of str2 is "!"
 if (str2.indexOf("!") != -1) { // NO EXCEPTION, but only because str2 is not null
 System.out.println("String ends with an exclamation!");
 } else {
 System.out.println("String DOES NOT end with an exclamation!");
 }
 }
}

Exception FIXED examplepublic class StringChecker {
 public static void main(String[] args) {
 String str1 = null; // str1 is not initialized (it's null)
 String str2 = "Computer Science"; // str2 is initialized with a string

 // Check if last character of str1 is "!"
 if (str1 != null && str1.indexOf("!") != -1) { //NO EXCEPTION
 System.out.println("String ends with an exclamation!");
 } else {
 System.out.println("String DOES NOT end with an exclamation!");
 }

 // Check if last character of str2 is "!"
 if (str2 != null && str2.indexOf("!") != -1) { // NO EXCEPTION
 System.out.println("String ends with an exclamation!");
 } else {
 System.out.println("String DOES NOT end with an exclamation!");
 }
 }
}

Summary
● Two Boolean expressions are equivalent if they evaluate to the same value in all cases. Truth

tables can be used to prove Boolean expressions are equivalent.

● De Morgan’s Laws can be applied to Boolean expressions to create equivalent ones:
!(a && b) is equivalent to !a || !b
!(a || b) is equivalent to !a && !b

● A negated expression with a relational operator can be simplified by flipping the relational
operator to its opposite sign.

!(c == d) is equivalent to c != d
!(c != d) is equivalent to c == d
!(c < d) is equivalent to c >= d
!(c > d) is equivalent to c <= d
!(c <= d) is equivalent to c > d
!(c >= d) is equivalent to c < d

● Two different variables can hold references to the same object. Object references can be
compared using == and !=. (Two object references are considered aliases when they both
reference the same object.)

Summary continued…
● A reference value can be compared with null, using == or !=, to determine if the reference

actually references an object.

● A NullPointerException is thrown when you try to perform an operation (such as calling a
method or accessing a field) on an object that hasn't been initialized and is null

● Classes often define their own equals method, which can be used to specify the criteria for
equivalency for two objects of the class. The equivalency of two objects is most often
determined using attributes from the two objects.

● Identify when an iterative process is required to achieve a desired
result.

● Develop code to represent iterative processes using while loops and
determine the result of these processes.

2.7 while Loops
Learning Objectives:

Loops
A loop in programming, also called iteration or repetition, is a way to
repeat one or more statements. If you didn’t have loops to allow you to
repeat code, your programs would get very long very quickly!

Using a sequence of code, selection (ifs), and repetition (loops),
the control structures in programming, you can construct an algorithm
to solve almost any programming problem.

Iteration Flowchart
Notice:
● This conditional

statement loops back
on itself. As a result, the
conditional might be
evaluated multiple
times.

● As a result, the same
command is running
multiple times.

The below flowchart contains a “loop” that runs “while” a condition
is true. How many times will the loop run? What is the output that

would be generated from the program?

Output:
Hi!
Hi!
Hi!
Hi!
Hi!
Done!System.out.println(“Hi”);

counter = counter + 1;

counter < 5

int counter = 0;

System.out.println(“Done!”);

TRUE FALSE

The below flowchart contains a “loop” that runs “while” a condition
is true. How many times will the loop run? What is the output that

would be generated from the program?

Output:
The program
will print “Hi!”
and add 3 to the
counter
infinitely!

An infinite loop happens when code will cycle through a set of commands forever,
since the loop condition is always true. Infinite loops are almost always undesirable.

System.out.println(“Hi”);
counter = counter + 3;

int counter = 0;

System.out.println(“Done!”);

TRUE FALSEcounter != 5

The While Loop in Java Explained
Syntax
while (condition) {

 <instructions>

}

● While the <condition> is true, the computer keeps repeating

the <instructions>.

● When the test condition is false, we exit the loop and continue

with the statements that are after the body of the while loop.

● If the condition is false the first time you check it, the body of

the loop will not execute.

● Conceptually, a while loop is very similar to an if conditional,

except that a while is continually executed until it's no longer

true and an if is only executed once.

Example
int i = 1;

while (i < 10) {

System.out.println(i);

 i++;

}

That code will print out
the numbers 1 to 9, and
then once i becomes 10
and is thus no longer less
than 10, the computer
will stop printing out the
value of i.

The previous example is simple but it shows the basic common structure of while
loops. Our code often starts off by initializing a variable (or more than one) before
the while, then references that variable (or a related one) in the condition, and
then modifies that variable in some way in the instructions.

RULE 1: Declare and initialize your loop’s
 control variable

RULE 2: Test your loop control variable
 with the condition you want to
 verify is still true

RULE 3: Update your variable. Note:
 failing to update the variable
 inside the loop is probably the
 most common mistake!

//Rule 1
int counter = 0;

//Rule 2
while (counter <=10)
{

statement1;
statement2;

.

.
counter++; //Rule 3

}

Example 1
What is the value of count after the loop?

public class Main{

 public static void main(String[] args)

 {

 // 1. initialize the loop variable

 int count = 1;

 // 2. test the loop variable

 while (count <= 5){

 System.out.println(count);

 // 3. change/update the loop variable

 count++;

 }

 }

}

Output:
1
2
3
4
5

Answer: 6

Example 2
What is the value of count after the loop?

public class Main{

 public static void main(String[] args)

 {

 // 1. initialize the loop variable

 int count = 1;

 // 2. test the loop variable

 while (count <= 5){

 // 3. change/update the loop variable

 count++;

System.out.println(count);

 }

 }

}

Output:
2
3
4
5
6

Answer: 6

Writing While Loops
// A while statement
while (condition)

statement;

//A while statement with curly braces {}
while (condition) {

statement;
}

// A while statement with multiple statements -- must use {}
while (condition) {

statement1;
statement2;

.

.

.
}

● for while
statements, always
make sure the
condition is
encapsulated in in
open and closed
parenthesis ()

● without curly { }
braces to denote
a while loop body,
by default the
body only
contains one
statement.

NOTE: Curly braces mark the body of methods, loops,
and conditional blocks. They are not necessary if the
body or the block consists of only one statement.

Break Statements
int counter = 0;

while(true)

{

if(counter == 5)

{

break;

}

counter++;

}

● Writing while(true) will make
a program run infinitely.

● We can terminate while loops
by adding a break statement.

● Break statements allow you to
halt the execution and break
out of the while loop.

● This will then execute
statements that follow once
the while loop terminates.

while(true) will
cause the loop to run
forever, because the
condition is always

true.

The break statement
allows us to exit the
while loop and

continue executing the
program.

while(count > 0)
{

}

Break vs Return
public static void passwordCheck(String s)
{
 Scanner input = new Scanner(System.in);
 while(true)
 {

if(s.equals("strongPassword"))
{
 break;
}
System.out.println("Weak password, try again");
s = input.nextLine();

 }
 System.out.println("Next line of code");
}

public static void passwordCheck(String s)
{
 Scanner input = new Scanner(System.in);
 while(true)
 {

if(s.equals("strongPassword"))
{
 return;
}
System.out.println("Weak password, try again");
s = input.nextLine();

 }
 System.out.println("Next line of code");
}

This line of code will execute because
the break statement ends the while

loop and continues to the next line of
code following the while loop

This line of code will not execute
because the return statement exits
the method or constructor regardless

of what code follows the return
statement or the while loop

We can also halt the execution of a loop by
using the return keyword

method

other code

loop
break;

method

other code

loop
return;

Break vs. Return
The break statement will exit only
the loop, other code after the loop
will still execute.

the return statement will immediately exit
the entire method, it will NOT run the other
code in the method. Also if its a non-void
method, it can also return a value as well.

Whether or not the programmer uses break or return statements will depend on
the situation and the desired behavior.

Summary
● Iteration statements (loops) change the flow of control by repeating a segment of code zero

or more times as long as the Boolean expression controlling the loop evaluates to true.
Iteration is a form of repetition.

● Loops often have a loop control variable that is used in the boolean condition of the loop.
Remember the 3 steps of writing a loop:
○ (Step 1) Initialize the loop variable
○ (Step 2) Test the loop variable
○ (Step 3) Update the loop variable

● A while loop is a type of iterative statement. In while loops, the Boolean expression is
evaluated before each iteration of the loop body, including the first. When the expression
evaluates to true, the loop body is executed. This continues until the Boolean expression
evaluates to false, whereupon the iteration terminates.

● The loop body of an iterative statement will not execute if the Boolean expression initially
evaluates to false.

Summary (continued…)
● An infinite loop occurs when the Boolean expression in an iterative statement always

evaluates to true.

● Off by one errors occur when the iteration statement loops one time too many or one time too
few.

● Input-controlled loops often use a sentinel value that is input by the user like “bye” or -1 as the
condition for the loop to stop. Input-controlled loops are not on the AP CSA exam, but are
very useful to accept data from the user.

● break is a keyword used to break out of a loop and executes statements that immediately
follow the loop.

● return is a keyword used in methods to return a value back to the initial program that called
the method.

● Develop code to represent iterative processes using for loops and
determine the result of these processes.

2.8 for Loops
Learning Objectives:

int steps = 0;

while(steps < 4){
 System.out.println(“hi”);
 steps++;
};

While Loop Recap: 3 Parts
● A counting variable set to an

initial value
● A Boolean expression which

checks the condition of that
variable

● A statement which increases or
decreases the variable that is
being checked.
○ Note: if this piece is missing,

you may create an infinite
loop that never stops
running, or crashes your
browser!

int steps = 0;

while(steps < 4){
 System.out.println(“hi”);
 steps++;
}

A for loop combines these three parts
into one statement

for (int i=0; i<4; i++){
 System.out.println(“hi”);
}

Any variable name can be used
here. It’s most common to use i.

A loop is iteration: a repetitive portion of an
algorithm which repeats a specified number of
times or until a given condition is met.

Syntax
for (statement 1; statement 2; statement 3) {

 <instructions>

}

Statement 1 is executed (one time) before the execution of the code block. It is often
referred to as the initialization, because it initializes the counter variable to a starting value.
This counter variable is used throughout the loop and keeps track of the current repetition,
and is typically named i.

Statement 2 defines the condition for executing the code block. The condition part tells the
computer whether to keep repeating or not. The computer evaluates the condition each
time, and if the expression is true, it executes the inside instructions. If not, it exits the loop
entirely.

Statement 3 is executed (every time) after the code block has been executed. It is often an
increment/decrement which modifies the counter variable after each repetition.

The For Loop in Java Explained
the is referred to as

the loop header

Step 3. Updating of the loop control variable

for (int number = 0; number < 5; number++){

 //commands to run

}

● Declaring and initializing a loop control variable
A for loop consists of three parts:

Step 1. Condition that must be true to run the loop
Step 2. Commands(body of the loop) to run

This is only done ONLY once before
the first evaluation of the condition.

Execute the body of the loop after evaluating the condition is true

Update the control
variable after the

body of the loop is
executed.

Step 3

Step 2

This is evaluated first to check
if you will go into the loop.

Step 1

Loop Tracing a For Loop Example
int sum = 0;

for(int i = 0; i <= 20; i += 5){
 sum += i;
}

System.out.println(sum);

output: 50

sum i

30

15

5

0

0

25

20

15

10

5

0

50 メ

✔
✔
✔
✔
✔

off by one Loop Example

for(int i = 1; i < 10; i++)

{

System.out.println(i);

}

This program is meant to count from 1 - 10 1
2
3
4
5
6
7
8
9

When a for loop iterates one too few or one too many times, it’s referred to as
an off by one error.

When we run the code below, it only prints 1-9, this is because loop incorrectly
doesn't include the value 10 in the boolean expression. This is an example of an
Off by One Error, because it doesn’t account for the additional number.

For Loop vs While Loop

The for loop should be used if you know the amount of
times you want something to execute, the for loop can
repeat instructions a specific number of times.

The while loop should be used if you want
something to execute as long as a
certain condition is true.

Categories of loops
indefinite(undetermined) loop: One where the number of times its body repeats is not
known in advance.

• Prompt the user until they type a non-negative number.
• Print random numbers until a prime number is printed.
• Repeat until the user types "q" to quit.

The while loop is usually used for indefinite loops.

definite(predetermined) loop: Executes a known number of times.
• Print "hello" 10 times.
• Find all the prime numbers up to an integer n.
• Print each odd number between 5 and 127.

In this lecture, we will see that a for loop is often used to implement a definite loop.

For vs While
Write a loop to compute the sum: 1 + 2 + 3 + … + 99 + 100

int sum = 0;

int number = 1;

while(number <= 100){

 sum += number;

 number++;

}

int sum = 0;

for(int i = 1; i <= 100; i++){

 sum += i;

}

Both for and while loops can
be used to solve this problem.

For vs. While
Although for and while loop can generally be interchangeable. It is best practice to
use a for loop as a definite loop where the beginning and termination of the loop is well
defined.

for(int i = 1; i <= 100; i++){

System.out.println(i);

}

This for loop executes 100 times. It is a definite loop. It is usually better to use a for loop
as a definite loop.

For vs. While
If the termination condition of a loop is less well defined, use a while loop. For example,
suppose you require a positive integer input from the user. The following will loop until a
positive number is entered.

Scanner inp = new Scanner(System.in);

System.out.print("Enter a positive number:");

int x = inp.nextInt();

while(x <= 0){

System.out.print("Enter a positive number:");

x = inp.nextInt();

}

System.out.print("Thank you!");

This while loop executes an unknown number of times since you don't know when the
user will enter a positive number. It is a indefinite loop. It is better to use a while loop
here.

Sample Output:
Enter a positive number: -4
Enter a positive number: -5
Enter a positive number: -10
Enter a positive number: 6
Thank you!

Summary
● A for loop is a type of iterative statement. There are three parts in a for loop header: the

initialization (of the loop control variable or counter), the Boolean expression (testing the loop
variable), and the update (to change the loop variable).

● In a for loop, the initialization statement is only executed once before the first Boolean
expression evaluation. The variable being initialized is referred to as a loop control variable.

● The for loop Boolean expression is evaluated immediately after the loop control variable is
initialized and then followed by each execution of the increment (or update) statement until it
is false.

● In each iteration of the for loop, the update is executed after the entire loop body is executed
and before the Boolean expression is evaluated again.

● A for loop can be rewritten into an equivalent while loop (and vice versa).

● Off by One Error happens when a for loop iteration is off by one too many or one too few.

● Develop code for standard and original algorithms (without data
structures) and determine the result of these algorithms.

2.9 Implementing Selection and Iteration
Algorithms

Learning Objectives:

Basic Loop Algorithms
Important basic algorithms that use loops:
1) Compute a sum of a series(list of numbers)
2) Determine the frequency with which a specific criterion is met(for

example, divisibility)
3) Identify the individual digits in an integer

We will do an example of each of the above.

Compute a sum
Write a loop to compute the sum: 1 + 2 + 3 + … + 99 + 100

int sum = 0;

int number = 1;

while(number <= 100){

 sum += number;

 number++;

}

cumulative sum: A variable that keeps a sum in progress and is updated
repeatedly until summing is finished.

– The sum in the above code computes a cumulative sum.

Determine Frequency
Write a loop to determine how many numbers from 1327 to 4542 that are
multiples of 3 but not multiples of 5.

int count = 0;

int num = 1327;

while(num <= 4542){

 if(num % 3 == 0 && num % 5 != 0){

 count++;

 }

 num++;

}

Extracting Digits
Code that can extract digits from a number is useful (last four digits of a social security
number, whether digits form a valid credit card number)

The trick is to repeatedly modulo 10 and integer divide by 10. For example:
int num = 1347;

int ones = num % 10; // extract the last digit: 7

num /= 10; // remove the last digit, num = 134

int tens = num % 10; // extract the last digit: 4

num /=10; // remove the last digit again, num = 13

int hundreds = num % 10; // extract the last digit: 3

num /= 10; // num = 1

int thousands = num % 10; // 1

Extracting Digits
For numbers of arbitrary lengths, we can use a while loop to implement the previous
algorithm!

Scanner console = new Scanner(System.in);

System.out.print("Enter number: ");

int number = console.nextInt();

while(number != 0){

// extract last digit

System.out.println(number % 10);

number /= 10; // remove last digit

}

Output:
Enter a number: 2348
8
4
3
2

● Develop code for standard and original algorithms that involve
strings and determine the result of these algorithms.

2.10 Implementing String Algorithms
Learning Objectives:

String Traversal
String traversing is the process of going through a String one character at a time,
often using loops! The substring() method is particularly useful when attempting to
traverse Strings. We can traverse Strings using loops, here's an example:

//Prints each character in a String on a new line
String print = "Print Me!";

for(int i = 0; i < print.length(); i++)
{

System.out.println(print.substring(i, i+1));
}

Initialize the
variable i to
0 since the

first index is 0

We want to increase i by 1
to access each character

individually

0 1 2 3 4 5 6 7 8

P r i n t M e !

print.length() = 9, but Strings start
at index 0. We put i < print.length()

so i only goes up to the last index!

Isolates each
character of the

String print

IndexOutofBounds
If we were to make i <= print.length(), we would get an IndexOutofBounds
Error, because we are attempting to access a String index that does not exist.

//Prints each character in a String on a new line
String print = "Print Me!";

for(int i = 0; i <= print.length(); i++)
{

System.out.println(print.substring(i, i+1));
}

0 1 2 3 4 5 6 7 8

P r i n t M e !

when i = 9, then the
condition
i <= print.length()
is true since the length
is 9, so 9 <= 9 is true.
But, then when trying to
substring(9, 10) will
give an error since
there's no such index 9
that we can return a
substring for.

The fix: when traversing make sure you use either:
● i < string.length()

or
● i <= string.length() - 1

String Algorithms: For Loops
Loops allow us to do String traversals. Suppose we want to know the number of
spaces in a String.

public static int countSpaces(String str){

int count = 0;

for(int i = 0; i < str.length(); i++){

if(str.substring(i, i + 1).equals(" "))

count++;

}

return count;

}

String Algorithms: For Loops
Assume that a given String is a sequence of words separated by spaces, return
the number of words. Use countSpaces.

public static int numOfWords(String str){

return countSpaces(str) + 1;

}

Reversing a String
Create a method that reverses the order of a String:

public static String reverse(String string)

{

 String newString = "";

 for(int i = string.length() - 1; i >= 0; i--)

 {

 String character = string.substring(i, i+1);

 newString += character;

 }

 return newString;

}

Remove Spaces (While)
Given a string, return the string with all of its spaces removed.
We will do this first with a while loop.
One way to do this is to use a while loop with indexOf.

public static String removeSpaces1(String str){

while(str.indexOf(" ") != -1){

 int indexSpace = str.indexOf(" ");

 String first = str.substring(0, indexSpace);

 String second = str.substring(indexSpace + 1);

 str = first + second; // first space removed

}

return str;

}

Remove Spaces (For)
Given a string, return the string with all of its spaces removed.

We now implement this with a for loop. Start with an empty string. Then examine every
letter and if it is NOT a space, add it to the string. This builds up the String one letter at a
time but avoids the spaces. For some students, this may be easier to understand and
write then the previous while loop version.

public static String removeSpaces1(String str){

String ans = "";

for(int i = 0; i < str.length(); i++){

String letter = str.substring(i, i+1);

if(!letter.equals(" "))

ans += letter;

}

return ans;

}

Palindrome
Given a string, return whether the string is a palindrome(reads the same forward as
backwards).

public static boolean isPalindrome(String str){

int len = str.length();

for(int i = 0; i < len; i++){

String current = str.substring(i, i + 1);

String opposite = str.substring(len – 1 - i, len - i);

if(!current.equals(opposite))

return false;

}

return true;

}

Can we make the code slightly more efficient?

Improved Palindrome
We can go just to the middle of the String.

public static boolean isPalindrome(String str){

int len = str.length();

for(int i = 0; i < len/2; i++){

String current = str.substring(i, i + 1);

String opposite = str.substring(len – 1 - i, len - i);

if(!current.equals(opposite))

return false;

}

return true;

}

Alternate Palindrome
Assuming the method reverse() is defined.

public static boolean isPalindrome(String str){

String reverse = reverse(str);

if(str.equals(reverse))

return true;

return false;

}

charAt Example
You can also use charAt(index) to access individual characters in a String. The
following code prints each character on a separate line.

Code:
String name = "CodeHS";

for (int i = 0; i < name.length(); i++)

{

System.out.println(name.charAt(i));

}

Output:
C
o
d
e
H
S

Summary
● Loops can be used to traverse or process a string.

● There are standard algorithms that utilize String traversals to:
○ Find if one or more substrings has a particular property
○ Determine the number of substrings that meet specific criteria
○ Create a new string with the characters reversed

● Develop code to represent nested iterative processes and determine
the result of these processes.

2.11 Nested Iteration
Learning Objectives:

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}

line = 1

Putting a loop inside another loop is
called nesting.

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}

line = 1

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}

line = 1 number = 1

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}

line = 1 number = 1

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1

line = 1 number = 1

number*line = 1

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1

line = 1 number = 2

The inner loop needs
to finish executing
BEFORE the outer

loop moves to the
next iteration!

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1

line = 1 number = 2

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2

line = 1 number = 2

number*line = 2

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2

line = 1 number = 3

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2

line = 1 number = 3

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3

line = 1 number = 3

number*line = 3

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3

line = 1 number = 4

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3

line = 1 number = 4

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4

line = 1 number = 4

number*line = 4

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4

line = 1 number = 5

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4

line = 1 number = 5

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5

line = 1 number = 5

number*line = 5

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5

line = 1 number = 6

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5

line = 1 number = 6

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5

line = 1 number =

Now we exit the for loop and move to
the code that directly follows the inner

loop. In this case, we are adding a
println() statement so that the next line
of code printed to the console is on a

new line.

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5

line = 1

number no longer exists
because the inner for

loop finished executing!

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

number++;

} 1 2 3 4 5

line = 1

number no longer exists
because the inner for

loop finished executing!

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5

line = 2

Now the outer loop finally
increments, increasing the

value of line

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5

line = 2

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5

line = 2 number = 1

Since the first line of code in the outer
for loop is another for loop, we

re-initialize number and set its value to
1, and the whole process begins again!

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5

line = 2 number = 1

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2

line = 2 number = 1

number*line = 2

The new value of
line is used in the

inner for loop

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2

line = 2 number = 2

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2

line = 2 number = 2

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4

line = 2 number = 2

number*line = 4

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4

line = 2 number = 3

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4

line = 2 number = 3

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4 6

line = 2 number = 3

number*line = 6

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4 6

line = 2 number = 4

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4 6

line = 2 number = 4

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4 6 8

line = 2 number = 4

number*line = 8

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4 6 8

line = 2 number = 5

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4 6 8

line = 2 number = 5

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4 6 8 10

line = 2 number = 5

number*line = 10

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4 6 8 10

line = 2 number = 6

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4 6 8 10

line = 2 number = 6

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4 6 8 10

line = 2

Skips to next line

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.print(number*line + “ ”);

}

System.out.println();

}
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15

line = 3

Now that the outer for loop has
completed, it returns to the

increment, and increases the value
of line by 1. This process repeats

each time until the value of line is
greater than or equal to 6.

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20

line = 4

Now that the outer for loop has
completed, it returns to the

increment, and increases the value
of line by 1. This process repeats

each time until the value of line is
greater than or equal to 6.

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

line = 5

Now that the outer for loop has
completed, it returns to the

increment, and increases the value
of line by 1. This process repeats

each time until the value of line is
greater than or equal to 6.

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

line = 6

Program stops!

Note: the entire inner loop runs for each
iteration of the outer loop.

Nested Loops Example 1
for(int line = 1; line < 6; line++)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + " ");

}

System.out.println();

}

The number of times a nested loop will run is
calculated by the number of iterations in the inner loop

* iterations of the outer loop. This can be a helpful
calculation when trying to figure out what to set your

for loop increment and boolean conditions to.

Runs 5
times

Runs 5
times

Runs 25
times total!

Nested Loops
• Having a loop inside a loop is what is referred to as nested loops

• Important facts:
• the inner loops runs as many times as

the outer loop runs
• the inner loop must finish for the next

iteration in the outer loop to occur
• Let’s look at more examples…

Variable Scope
Variable scope refers to where in a program a variable can be accessed or used. A
variable declared inside a method or block { } only exists and can be used within
that method or block.
int outsideLoop;

for(int outer = 0; outer < 5; outer++)

{

//code

for(int inner = 0; inner < 5; inner++)

{

//code

}

}

//code

As stated earlier, it’s very important to pay attention
to the placement of variables in your program,

especially as we continue to add control structures
that have different levels of variable access.

int outsideLoop;

for(int outer = 0; outer < 5; outer++)

{

//code

for(int inner = 0; inner < 5; inner++)

{

//code

}

}

//code

Variable Scope
Because the variable outsideLoop is outside of both loops and
is executed prior to the rest of the code, outsideLoop can be
used in both for loops, and in any code that follows both for
loops.

int outsideLoop;

for(int outer= 0; outer<5; outer++)

{

//code

for(int inner= 0; inner<5; inner++)

{

//code

}

}

//code

Variable Scope
The variable outer is initialized in the outer for loop, and can
only be used within the brackets of the outer for loop. Because
the inner for loop is inside of the outer for loop, the variable
outer can be used in the inner for loop.

int outsideLoop;

for(int outer= 0; outer<5; outer++)

{

//code

for(int inner= 0; inner<5; inner++)

{

//code

}

}

//code

Variable Scope The variable inner can be used only between the brackets
that enclose the inner for loop. If the variable inner is used
outside of the inner for loop, an error will occur.

int line = 1;

while(line < 6)

{

int number = 1;

while(number < 6)

{

 System.out.print(number*line + “ ”);

 number++;

}

System.out.println()

line++;

}

int line = 1;

while(line < 6)

{

for(int number = 1; number < 6; number++)

{

System.out.print(number*line + “ ”);

}

System.out.println()

line++;

}

Nested While Loops Nested While/For Loops

Here are two examples of nesting using while loops, and a while/for loop combination.
This is the same times table problem that we just solved, just written using different

control structures.

Summary
● Nested iteration statements are iteration statements that appear in the body of another

iteration statement.

● When a loop is nested inside another loop, the inner loop must complete all its iterations
before the outer loop can continue.

● Calculate statement execution counts and informal run-time
comparison of iterative statements.

2.12 Informal Run-Time Analysis
Learning Objectives:

Measuring Algorithm Performance
The absolute running time of an algorithm can’t be predicted since this depends on
the:

• Programming language
• Computer
• Other programs running at the same time
• The quality of the operating system
• and many other factors.

A basic approach that we can take, is the Statement Execution Count(the number of
times a statement is executed by the program). This suggests that we can count the
number of instructions that algorithm has to execute. Once we know how many times
a piece of code executes, we can have a relative way to compare 2 or more
algorithms for efficiency. Algorithms with lower execution counts are likely to be more
efficient.

Example Algorithm
public void computeSum ()

{

int sum = 0;

int n = 10;

for (int i = 0; i < n; i++)

{

sum += i;

}

System.out.println(sum);

}

First instruction executes once!

1

Execution Count

Second instruction executes once!

2

Third instruction executes n times!(in this case 10)

12

Fourth instruction executes once!

13

If you have...if Statements
if (condition)

{

 sequence of statements

}

else

{

 sequence of statements

}

For conditional statements,
either sequence 1 will

execute, or sequence 2 will
execute. So the count will

include one of the 2
statement counts.

OR

If you have...for Loops
for (int i = initial; i < n; i++)

{

 sequence of statements

}

If the increment of a for
loop is ++, the execution

count is (n - initial)
initial n Execution count

0 10 10 - 0 = 10

4 8 8 - 4 = 4

 for (int i = initial; i < n; i++) {

 for (j = init2; j < m; j++)

 {

 sequence of statements

 }

}

For nested loops, the
execution count is

(n - initial) * (m - init2)

initial n init2 m Execution count

0 10 0 5 (10 - 0) * (5 - 0) = 50

4 8 1 4 (8 - 4) * (4 - 1) = 12

If you have...Nested Loops

Some Examples
What’s the total number of x++ operations?

int x = 0;

for(int i = 0; i < 10; i++){

x++;

}

for(int j = 1; j <= 15; j++){

x++;

}

Answer: 10 + 15 = 25

Some Examples
What’s the total number of x++ operations?

int x = 0;

for(int i = 0; i < 10; i++){

for(int j = 0; j < 15; j++)

x++;

}

Answer: 10 * 15 = 150

Summary
● A statement execution count indicates the number of times a statement is executed by the

program. Statement execution counts are often calculated informally through tracing and
analysis of the iterative statements.

● A trace table can be used to keep track of the variables and their values throughout each
iteration of the loop.

● The number of times a loop executes can be calculated by largestVal - smallestVal + 1
where these are the largest and smallest values of the loop counter variable possible in the
body of the loop.

● The number of times a nested for-loop runs is the number of times the outer loop runs times the
number of times the inner loop runs.

● In non-rectangular loops, the number of times the inner loop runs can be calculated with the
sum of natural numbers formula n(n+1)/2 where n is the number of times the outer loop runs or
the maximum number of times the inner loop runs.

