
AP CS A (Java) Training
Unit 1: Using Objects and Methods
Updated Curriculum (2025-2026)

Camera ON: Encouraged
Contribute in

session
Write questions in
chat or unmute!

Meeting Etiquette Guide

Meet the Trainers
Jackson Riche

● Jupiter High School
● Currently teaching AP CS Principles, AP CS A,

AICE Computer Science & Cybersecurity
● Started teaching CS 20 years ago
● Email: jackson.riche@palmbeachschools.org

Yanet Cabrera

● Wellington High School
● Currently teaching AP CS Principles, AP CS A,

Algebra 2 Honors
● MA.Ed in Mathematics Education

○ Started teaching CS 4 years into teaching
● Self-taught CS knowledge and took FTCE Prep

course to take and pass FTCE CS Certification
● Email: yanet.cabrera@palmbeachschools.org

Attendees

Introductions

Tell us about yourself:
● What is your name?
● What school do you teach at?
● What courses are you

expecting to teach this year?

Agenda for each day
Time Description

9:00 AM Welcome!

10:30 AM Short 10 minute break

12:00 PM Lunch 1 hour

2:30 PM Short 10 minute break

4:00 PM End of session

AP CS A Units of Study

What’s Going to Chance?
● Adding topics on text files and data sets.

● Removing the inheritance unit (Unit 9). This will more closely align the course with

introductory college courses and allow teachers to cover other topics in more

detail.

● Consolidating Units 1-8 and 10 into 4 units.

AP CS A Exam Breakdown
Multiple-Choice Section

● 42 questions—an increase from 40.

● 4 answer choices per question—a decrease from 5.

● 55% of overall exam score—an increase from 50%.

Free-Response Section

● 4 shortened questions with 25 scored points—a decrease from 36 scored

points.

● Removing arrays from Question 3 (Data Analysis with ArrayList). This

question will focus only on ArrayLists.

● 45% of overall exam score—a decrease from 50%.

Summary: 2024-2025 vs 2025-2026

Software is a collection of
instructions that is run by a

computer.

An integrated development
environment , or IDE , is a

software application for writing,
compiling, testing, and debugging

program code.

AP CS A Curriculum and IDE’s
● Teachers use different programming environments(for coding in java)

below are some popular ones:

○ Local IDEs(integrated development environment): Dr.Java, Eclipse, jGrasp, many more

○ Online IDEs: JDoodle, CodeHS, many more

● Teachers also use different curriculums, some popular ones are:

○ Code.org, CodeHS, CSAwesome, Project STEM, many more

Units 1:
Using Objects and Methods

● Represent patterns and algorithms found in everyday life using
written language or diagrams

● Explain the code compilation and execution process.
● Identify types of programming errors.

Learning Objectives:

1 . 1 Introduction to Algorithms,
Programming, and Programming Concepts

Students will be able to represent patterns and algorithms found
in everyday life using

● Algorithm is a finite set of step-by-step instructions to solve a problem or
complete a task

● It can be represented in many ways:
○ With graphics (Ex. flowcharts)
○ Pseudocode(Designed primarily for Human Understanding)
○ Program code(Designed for computers) Ex. Java, Python, JavaScript, etc)

Key characteristics of algorithm
Finite: It must end after a limited number of steps.

Well-defined: Each step must be clear and unambiguous.

Input: It may take one or more inputs.

Output: It produces at least one output.

Effective: Each step must be basic enough to be performed exactly.

An algorithm to find calculate and display the sum of 2 numbers

1. Begin

2. Input firstNum

3. Input secondNum

4. Add firstNum and secondNum

5. Store the result from #4 into a variable sum

6. Display the content variable sum

7. Stop

Sequencing, Selection, and iteration
● Algorithms can be implemented through sequencing, selection, and

iteration.
○ Sequencing means that each step of the algorithm is completed one at a time.
○ Selection means that decisions can be made based on certain condition(s) (if/else)
○ Iteration means that step(s) in an algorithm can be repeated (loops).

Students will be able to explain the code compilation and execution
process.

● Code can be written in any text editor; however, an Integrated Development Environment
(IDE) is often used to write programs because it provides tools for a programmer to write,
compile, and run code.

● A compiler checks code for some errors. Errors detectable by the compiler need to be fixed
before the program can be run.

Java
Java is a programming language, which means that we can use Java to tell a
computer what to do.

Computers don’t actually speak Java, so we have to compile (translate) Java
source files (they end in .java) into class files (they end in .class).

The source file is something humans can read and edit, and the class file is
code that a computer can understand and can run.

http://www.youtube.com/watch?v=G1ubVOl9IBw

Java Terminology
• class:

A description of a type of objects. (Animal class, Human class, Employee
class, Car class)

• statement: An executable piece of code that represents a complete
command to the computer.
– every basic Java statement ends with a semicolon ;

• method: A named sequence of statements that can be executed together
to perform a particular action or computation (in CSP, we called this a
procedure)

Structure of a Java program
• Every executable Java program consists of a class, called the driver class,

– that contains a method named main,
• that contains the statements (commands) to be executed.

• Example:
public class className {

 public static void main(String[] args) {

 statement;

 statement;

 ...

 statement;

 }

}

class: a program

statement: a command to be executed

method: a named group of statements

public class MyProgram
{

public static void main(String[] args)
{

}
}

Everything in the .java file must exist within the program’s class.

Skeleton of a java program Recap

If the class is MyProgram, the java file must be named MyProgram.java
The main method is the point where java programs start their execution.

Anything between the curly brackets in the main method will be executed.
Without a main method, you will get an ERROR!!

things to note...
● Syntax is the rules for how a programmer must write code for a computer

to understand.

● We write statements to tell Java what to do.

● Java is case-sensitive, which means Hello and hello refer to different things
in a program.

● We use camel case as the standard convention to capitalize words within
names, such as myPainter or MyConsole.

● Java has keywords, which are words that have a predefined meaning, like
public and class.

The screen below shows a program written on an IDE that provides pretty-printing,
line numbering, formatting, auto-error checking, etc.

File naming
The name of the class has to match up with the name of the file.

For example, the class below is called Main; therefore, the name of the file is
Main.java

Students will be able to identify the types of programming Errors

● A syntax error is an error in the program due to the rules of the
programming language not being followed. These errors are detected
by the compiler.

Ex.

Identify the types of programming Errors
A logicerror is a mistake in the algorithm or program that causes it to
behave incorrectly or unexpectedly.

These errors are detected by testing the program with specific data to
see if it produces the expected outcome.

Ex. Output

Identify the types of programming Errors
A run-time error is an error that occurs during the execution of of the
program. In the other words, it causes a program to crash as a result of an
operation that is impossible for the computer to carry out.

Ex.

Identify the types of programming Errors
 In Java, run-time errors are often referred to as exceptions which are errors
that occurs as a result of an unexpected problem detected by the compiler
while the program is running. It automatically interrupts the normal flow of the
program’s execution.

● Identify the most appropriate data type category for a particular
specification.

● Develop code to declare variables to store numbers and Boolean
values.

1 . 2 Variables and Data Types
Learning Objectives:

Data Types
Programming uses a number of different data types. A data type determines
the type of value (e.g. integers, floats, etc..) and a set of operations (e.g. +, -, *,
/, etc..) we can do on them.

Data types can be categorized as either primitive or reference.

The primitive data types used in this course define the set of operations for
numbers and Boolean(true or false) values.

Reference variables or object variables hold a reference(or address) to an
object of a class(more on this later).

Primitive Data Types
A primitive data type specifies the size and type of variable values, and it has no additional
methods. There are eight primitive data types in Java:

Data Type Size Description Default Value
(for attributes)

byte 1 byte Stores whole numbers from -128 to 127 0

short 2 bytes Stores whole numbers from -32,768 to 32,767 0

int 4 bytes Stores whole numbers from -2,147,483,648 to 2,147,483,647 0

long 8 bytes Stores whole numbers from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

0L

float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7 decimal digits 0.0f (f must be there)

double 8 bytes Stores fractional numbers. Sufficient for storing 15 decimal digits 0.0 or 0.0d

boolean 1 bit Stores true or false values false

char 2 bytes Stores a single character/letter or ASCII values ‘0’

Primitive types
Only 3 primitive types are covered on the AP Computer Science A exam,
and they are:

• int - which store integers (whole numbers like 3, -76, 20393)

• double - which store floating point numbers (decimal numbers like 6.3,
-0.9, and 60293.93032)

• boolean - which store boolean values (either true or false).

A String is an object data type that we
often use in our programs. When we
create a String, we are actually
creating an object that is an instance of
the String class which represents a
collection of characters. Enclosing your
character string within double quotes will
automatically create a new String
object; for example, String x = "this
is a string ";

The String class is available in all
programs by default.

are Strings primitive? NO!

Receipt example
What's bad about the following code?

public class Receipt {
 public static void main(String[] args) {
 // Calculate total owed, assuming 8% tax / 15% tip
 System.out.println("Subtotal:");
 System.out.println(38 + 40 + 30);
 System.out.println("Tax:");
 System.out.println((38 + 40 + 30) * .08);
 System.out.println("Tip:");
 System.out.println((38 + 40 + 30) * .15);
 System.out.println("Total:");
 System.out.println(38 + 40 + 30 +
 (38 + 40 + 30) * .08 +
 (38 + 40 + 30) * .15);
 }
}

○ The subtotal expression (38 + 40 + 30) is repeated
○ So many println statements
○ We will use variables to solve the above problems.

Variables
● variable: A piece of the computer's memory that is given a name

and type, and can store a value.
○ Like preset stations on a car stereo, or cell phone speed dial:

○ Steps for using a variable:
■ Declare it - state its name and type
■ Initialize it - store a value into it
■ Use it - print it or use it as part of an expression

16

age

Declaration
● variable declaration: Sets aside memory for storing a value.

○ Variables must be declared before they can be used.
○ Java is a strongly typed programming language because every variable must be

declared with a data type. A variable cannot start off life without knowing the
range of values it can hold, and once it is declared, the data type of the variable
cannot change.

● Syntax:
dataType variableName;

■ The variableName is also called an identifier.

○ int x;

○ double myGPA;

x

myGPA

Naming Variables
Variable names must follow certain rules:
1. They must start with a letter, $, or _

a. numApples OR $numApples OR _numApples
b. NOT 5Apples

2. The rest of name can have letters, numbers or _
a. numApples5 OR num_Apples

3. Written in lowerCamelCase
a. The first word in a variable name should be lowercase and every other

word should be Uppercase.

numApples numapples Numapples

Keywords
• keyword: An identifier that you cannot use to name a variable because it

already has a reserved meaning in Java.
 abstract default if private this
 boolean do implements protected throw
 break double import public throws
 byte else instanceof return transient
 case extends int short try
 catch final interface static void
 char finally long strictfp volatile
 class float native super while
 const for new switch
 continue goto package synchronized

Other important things to note
• The name of the variable should describe the data it holds. A name

like score helps make your code easier to read.

• A name like x is not a good variable name in programming, because it gives no
clues as to what kind of data it holds.

• Do not name your variables crazy things like thisIsAReallyLongName, especially
on the AP exam. You want to make your code easy to understand, not harder.

• Variable names are case sensitive.
Example: name is a different variable than Name.

String name = “Karel”;

Name = “New Name!”;

Identify any variables and their data type for each scenario below.
1. Lucy needs to keep track of her store’s inventory and how much money she has

made.

2. Alex wants to write a program to keep track of his family members and some of
their characteristics and their health. He wants to collect their age, weight, height
and calories they consume.

Data type practice

double money int inventory

int age double weight int height int calories

Assignment
● assignment: Stores a value into a variable.

○ The value can be an expression; the variable stores its result.

● Syntax:
variableName = expression;

○ int x;
x = 3;

○ double myGPA;
myGPA = 1.0 + 2.25;

x 3

myGPA 3.25

Using variables
• Once given a value, a variable can be used in expressions:

int x;
x = 3;
System.out.println("x is " + x); // x is 3

System.out.println(5 * x - 1); // 14

• You can assign a value more than once:
int x;
x = 3;
System.out.println(x + " here"); // 3 here

x = 4 + 7;
System.out.println("now x is " + x); // now x is 11

string concatenation:
string + number = concatenated string(more on this later)

Declaration/initialization
● A variable can be declared/initialized in one statement.

● Syntax:
dataType variableName = value;

○ double myGPA = 3.95;

○ int x = (12 - 3) * 2; x 18

myGPA 3.95

Assignment and algebra
• Assignment uses = , but it is not an algebraic equation.

 = means, "store the value at right in variable at left"

The right side expression is evaluated first, and then its result is stored in the
variable at left.

• What happens here?
int x = 3; // x declared and initialized as 3

x = x + 2; // x gets what it was before plus 2, so now x is 5

Assignment and types
● The data type in the declaration must match the assigned value type!

○ int x = 2.5; // ERROR: incompatible types

● An int value can be stored in a double variable.
○ The value is automatically converted into the equivalent real number.

○ double myGPA = 4; myGPA 4.0

Compiler(syntax) errors
● Order matters.

○ int x;

7 = x; // ERROR: should be x = 7;

● A variable can't be used until it is assigned a value.
○ int x;

System.out.println(x); // ERROR: x has no value

● You may not declare the same variable twice.
○ int x;

int x; // ERROR: x already exists

○ int x = 3;
int x = 5; // ERROR: x already exists

Printing a variable's value
● Use concatenation + to print a string and a variable's value on one line.

○ double grade = (95.1 + 71.9 + 82.6) / 3.0;

System.out.println("Your grade was " + grade);

int students = 11 + 17 + 4 + 19 + 14;

System.out.println("There are " + students +

 " students in the course.");

• Output:
Your grade was 83.2

There are 65 students in the course.

Variables vs Constants
Variable values can be altered after they’ve been initialized
int numApples;

numApples = 5;

numApples = 0;

Declaring a variable final prevents it from being altered.
final int numApples = 5;

numApples = 0;

5
numApples

int

0
numApples

int

final
• The keyword final can be used in front of a variable declaration to make it

a constant that cannot be changed. Constants are traditionally capitalized.

public class TestFinal

{

 public static void main(String[] args)

 {

 final double PI = 3.14;

 System.out.println(PI);

 PI = 4.2; // This will cause a syntax error

 }

}

● Develop code to generate output and determine the result that would
be displayed.

● Develop code to utilize string literals and determine the result of using
string literals.

● Develop code for arithmetic expressions and determine the result of
these expressions.

1 . 3 Expressions and Output
Learning Objectives:

● Develop code to generate output and determine the result that would be
displayed.

System.out.print vs. System.out.println
● System.out. Print and and System.out.println is used to display

information on the computer screen.
● System.out.println moves the cursor to the next line after the information

has been printed on the screen whereas System.out.print prints in the
information on the screen and keeps the cursor at the end of the line.

System.out.println
The “System” in System.out.println() must be capitalized. And the
command line must end with a semicolon (;).

Code:
public class Welcome{

 public static void main(String[] args){

 System.out.println("Hi there!");

 System.out.println(”Welcome to APCS A!");

 }

}

Output:
Hi There!

Welcome to APCS A!

System.out.print
Do you see why there are two lines of output?

Code:
public class SecondClass{

 public static void main(String[] args){

 System.out.print("Hi there!");

 System.out.println(”Welcome to APCS A!");

 System.out.print(”We will learn Java!");

 }

}

Output:
Hi There!Welcome to APCS A!

We will learn Java!

Indent Nicely!
public class Welcome{ public static void main(String[]
args){ System.out.println("Hi there!”
);System.out.println(”Welcome to APCS A!");}}

The code above will compile and run correctly. Java
ignores whitespaces. But it is very hard to read, please
make an effort to indent nicely!

public class Welcome{

 public static void main(String[] args){

 System.out.println("Hi there!");

 System.out.println(”Welcome to APCS A!");

 }

}

string literals

● Literal is the code representation of a fixed value.
● String literal is a set of characters enclosed in double quotes.
● Escape sequences are special sequences of characters that can be included in a string.
● They start with a \ and have a special meaning in Java.
● There many escape sequences in Java; however, the only only ones used in this course are

○ \” for double quote
○ \\ for a backslash
○ \n for a newline

● Develop code to utilize string literals and determine the result of using
string literals.

Create String objects
● String objects can be created by using string literals

● By calling the String class constructor.

;

Strings can be concatenated using the + or += operator
resulting in a new String object.

Primitive values can be concatenated with a String object. This will result to a String
object

Escape Sequences in Java
Escape sequences start with a \ and have a special meaning in Java. This course uses the following
escape sequences: \”, \\, \n

Ex.

AP Practice Question
How do the escape sequences in the following code snippet format the printed output?
String specialItem = "Today: October 22\nwe will be serving \"dinosaur\" cookies.";
System.out.println(specialItem);

I. They add a new line.
II. They add quotations.
III. They add a backslash after the date.
IV. They format the word dinosaur in italics.

A. I only
B. II only
C. IV only
D. I and II
E. I and III

Coding Examples of Escape Sequences

● Develop code for arithmetic expressions and determine the result of
these expressions.

Arithmetic expressions, which consist of numeric values, variables, and
operators, include expressions of type and in and double

Arithmetic Operations
Numbers are values and we can do arithmetic operations on these values. Arithmetic operators
are used in mathematical expressions in the same way that they are used in algebra.

The following table lists the arithmetic operators.
Assume integer variable A holds 10 and variable B holds 20, then:

An expression is a combination of operands and
operators that evaluate to a single value.

4 + 6 21 - 3 * 2.0 "Hi " + "there"

10 15.0 "Hi there"

Operators can be used to construct compound
expressions , or a combination of expressions.

Evaluating Arithmetic operators
● As a program runs, its expressions are evaluated.

○ System.out.println(3 * 4); prints 12 NOT 3 * 4

○ How would we print the text 3 * 4 ?

■ System.out.println(“3 * 4”);

● As a program runs, its expressions are evaluated.
○ System.out.println(3 * 4); prints 12 NOT 3 * 4

○ How would we print the text 3 * 4 ?

● When we evaluate an expression, we need to pay attention to both the
value and type of the operand.

4 + 6 21 - 3 * 2.0 "Hi " + "there"

10 15.0 "Hi there"

int int

int double

int int double

String

String String

Evaluating Arithmetic operators

■ System.out.println(“3 * 4”);

When evaluating expressions, we evaluate the statement on
the right, then store the value in the variable on the left.

x = 15 - 5 * 2;

int x = 0; x 0

15 - 10

51

25

When we evaluate multiple expression statements in a row, we
use the updated value stored in each variable for future

expression evaluations.

int x = 3;

int y = 7;

x = x + y;

y = x + y;

 3x

 7y

1

2

3

4

 10

3 + 7

1

10

2

 17

10 + 7

1

17

2

Dividing two int values will result in an int value.

The decimal portion is truncated , or cut off from the end.

int x = 8;

int y = 3;

int z = x / y;

1

2

3

z

8 / 3

1

2

2 2

Dividing an int by 0 will result in
an ArithmeticException.

If you try to divide a double by 0, Java
assigns the result to Infinity because
of the way it handles decimal numbers.

int a = 7;

int b = 0;

int c = a / b;

double a = 7.0;

double b = 0.0;

double c = a / b;

Console

[EXCEPTION] Your code hit an exception while it was running.
Exception message: java.lang.ArithmeticException: / by zero

Console

Infinity

Integer remainder with %
The percent sign operator (%) is the mod (modulo) or remainder operator. The mod operator (x %
y) returns the remainder after you divide x (first number) by y (second number) so 5 % 2 will
return 1 since 2 goes into 5 two times with a remainder of 1. Remember long division when you
had to specify how many times one number went into another evenly and the remainder? That
remainder is what is returned by the modulo operator.

Examples:

2

0

3

0 R 2

2

5

4

2

2 R 1

1

15 % 5 = 0
since
15 / 5 = 3 Remainder 0

2 % 3 = 2
since
2 / 3 = 0 Remainder 2

15

15

5

3 R 0

0

5 % 2 = 1
since
5 / 2 = 2 Remainder 1

Applications of % operator
○ Obtain last digit of a number: 230857 % 10 is 7
○ Obtain last 4 digits: 658236489 % 10000 is 6489
○ Test for divisibility. For example, is a number even or odd? Is a number a multiple of 3?

// a number is even if it has no remainder

// when divided by 2.

if(number % 2 == 0){

…
}

// multiple of 3

if(number % 3 == 0){

…
}

Precedence
● precedence: Order in which operators are evaluated.

○ Generally operators evaluate left-to-right.
1 - 2 - 3 is (1 - 2) - 3 which is -4

○ But * / % have a higher level of precedence than + -
6 + 8 / 2 * 3
6 + 4 * 3
6 + 12 is 18

○ Parentheses can force a certain order of evaluation:
(1 + 3) * 4 is 16

○ Spacing does not affect order of evaluation
1+3 * 4-2 is 11

Order of Operations in Java
Precedence Operator Description

First () parenthesis

Second ++ -- ! (type) unary operators, logical not, typecasting

Third * / % multiplication, division, modulus

Fourth + - addition, subtraction, string concatenation

Fifth < <= >= > relational operators for greater/lesser

Sixth == != relational operators for equality

Seventh && logical and

Eighth || logical or

Ninth = += -= *= /= %= assignment operator

• 1 * 2 + 3 * 5 % 4
• _/

 |
 2 + 3 * 5 % 4

• _/
 |
 2 + 15 % 4

• ___/
 |
 2 + 3

• ________/
 |
 5

Precedence examples
■ 1 + 8 % 3 * 2 - 9
■ _/

 |
1 + 2 * 2 - 9

■ ___/
 |
1 + 4 - 9

■ ______/
 |
 5 - 9

■ _________/
 |
 -4

Practice Question 1
What value is the result of evaluating this expression?
(5 * 3 - 4 / 2) % 3

(A) 1 (C) 3(B) 2 (D) 0

(15 - 4 / 2) % 3

(15 - 2) % 3
13 % 3

1

Practice Question 2
Consider the following code segment.
int a = 3;
int b = 10;
double c = a + a / b;

What is the value of c after this code segment is executed?

A. 0
B. 0.6
C. 3
D. 3.0
E. 3.3

← 3 + 3 / 10 = 3 + 0(int) = 3, stored as double
3.0

Real numbers (type double)
● Examples: 6.022 , -42.0 , 2.143

○ Placing .0 or . after an integer makes it a double.

● The operators + - * / % () all still work with double.
○ / produces an exact answer: 15.0 / 2.0 is 7.5

○ Precedence is the same: () before * / % before + -

Mixing types
• When int and double are mixed, the result is a double.

4.2 * 3 is 12.6

• The conversion is per-operator, affecting only its operands.

– 7 / 3 * 1.2 + 3 / 2
– _/

 |
 2 * 1.2 + 3 / 2

– ___/
 |
 2.4 + 3 / 2

– _/
 |
 2.4 + 1

– ________/
 |
 3.4

3 / 2 is 1 above, not 1.5

• 2.0 + 10 / 3 * 2.5 - 6 / 4
• ___/

 |
2.0 + 3 * 2.5 - 6 / 4

• _____/
 |
2.0 + 7.5 - 6 / 4

• _/
 |
2.0 + 7.5 - 1

• _________/
 |
 9.5 - 1

• ______________/
 |
 8.5

● Develop code for assignment statements with expressions and
determine the value that is stored in the variable as a result of these
statements.

● Develop code to read input

1 . 4 Assignment statements and Input
Learning Objectives:

Assignment Operators
Assignment operators are used to assign values to
variables.

In the example below, we use the assignment operator
(=) to assign the value 10 to a variable called x:

Example
int x = 10;

Shortcuts can be used to modify a variable's value
before assigning it. In the example below we use the
addition assignment operator (+=) to add a value to a
variable:

Example
int x = 10;
x += 5;

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

A list of all assignment operators:

● Develop code for assignment statements with expressions and
determine the value that is stored in the variable as a result of these
statements.

Code Tracing
Code Tracing is a technique used to simulate a dry run through the code or pseudocode line by line
by hand as if you are the computer executing the code. Tracing can be used for debugging or
proving that your program runs correctly or for figuring out what the code actually does.

Trace tables can be used to track the values of variables as they change throughout a program. To
trace through code, write down a variable in each column or row in a table and keep track of its
value throughout the program. Some trace tables also keep track of the output and the line
number you are currently tracing.

or

Code Tracing Example 1
Trace through the following code:

int x = 0;
int y = 5;
int z = 1;
x++;
y -= 3;
z = x + z;
x = y * z;
y %= 2;
z--;

5

1

0 0 1 40 1

5 2 5 2 0

1 2 11 2

x:

y:

z:

int x = 2;

int y = 5;

x = y + 4;

y = x;

x = x + 1;

System.out.print(x + y);

x

2

y

5

99

10

Output:
19

Code Tracing Example 2

86

int x = 2;
int y = 12;
x += 5;
y -= x;
x *= y;
y++;
System.out.println(x);
System.out.println(y);

2 12
57

Output:
35
6

35 6

Code Tracing Example 3
x y

Practice Question 1
Explain the values of the variables mystery1, mystery2 and mystery3.
public static void main(String[] args){

int num = 159;

int mystery1 = num % 10;

int mystery2 = num / 10 % 10;

int mystery3 = num / 100;

}

Answer: mystery1 is the ones digit, mystery2 is the tens digit and mystery3
is the hundreds digit of num. So, since num is 159,
mystery1 = 9, mystery2 = 5 and mystery3 = 1.

Live Coding and assignment of Lab#1

Develop code to read input

• Input can come in a variety of forms, such as tactile, audio,
visual, or text.

• The Scanner class is one way to obtain text input from the
keyboard.

• Students will be not be tested on any of form of user input
mentioned above. However, using the Scanner to read text
input from the user is extremely important when students are
completing coding assignments on the computer.

• The Scanner class is one way to obtain text input

• The Scanner class is one way to obtain text input from
the keyboard

● Develop code to cast primitive values to different primitive types in
arithmetic expressions and determine the value that is produced as a
result.

● Describe conditions when an integer is casting to a value that is out
of range.

● Describe the conditions that limit accuracy of expressions

1 . 5 Casting and Ranges of Variables
Learning Objectives:

When doubles and ints are divided, the outcome will be a double.
int first = 2;

double second = 4.0;

System.out.println(second / first); 2.0

Recap: Doubles and Integers

What if you want your int to be a double, or your double to be an int?
The answer is typecasting! Casting is turning something of one type into
another type!

What if we want this to
be an int??

● Develop code to cast primitive values to different primitive types in arithmetic
expressions and determine the value that is produced as a result.

Type casting
● type cast: A conversion from one type to another.

○ To promote an int into a double to get exact division from /
○ To truncate a double from a real number to an integer

● Syntax:
(dataType)expression

Examples:
double result = (double)19/5; //3.8
int result2 = (int)result; //3

More about type casting
● Type casting has high precedence and only casts the item immediately next to it.

○ double x = (double) 1 + 1 / 2; // 1.0

○ double y = 1 + (double) 1 / 2; // 1.5

● You can use parentheses to force evaluation order.
double average = (double)(a + b + c) / 3;

○ The code above cast the sum (a + b + c) into a double.

● A conversion to double can be achieved in other ways.
double average = 1.0 * (a + b + c) / 3;

Order of Operations in Java
Precedence Operator Description

First () parenthesis

Second ++ -- ! (type) unary operators, logical not, typecasting

Third * / % multiplication, division, modulus

Fourth + - addition, subtraction, string concatenation

Fifth < <= >= > relational operators for greater/lesser

Sixth == != relational operators for equality

Seventh && logical and

Eighth || logical or

Ninth = += -= *= /= %= assignment operator

Java Type Casting
Type casting is when you convert one primitive data type to another type. There are two types:

● Widening Casting (automatically) - converting a smaller type to a larger type size
int → double

Example:
int myInt = 9;

double myDouble = myInt; // Implicit casting: int to double

System.out.println(myInt); // Outputs 9

System.out.println(myDouble); // Outputs 9.0

● Narrowing Casting (manually) - converting a larger type to a smaller size type
double → int

Example:
double myDouble = 9.78;

int myInt = (int) myDouble; // Manual casting: double to int

System.out.println(myDouble); // Outputs 9.78

System.out.println(myInt); // Outputs 9

Consider the following code segment.
double num = 13 / 4;
System.out.print(num);
System.out.print(" ");
System.out.print((int) num);

What is printed as a result of executing the code segment?
A. 3 3
B. 3.0 3
C. 3.0 3.0
D. 3.25 3
E. 3.25 3.0

Practice Question

Integer.MAX_VALUE VS. Integer.MIN_VALUE
● The constant Integer.MAX_VALUE holds the value of the largest possible int

value.
● The constant Integer.MIN_VALUE holds the value of the lowest possible int

value.

● Integer values in Java are represented by values of type int, which are stored
using a finite amount of byte(4 bytes=32 bits)

● So, an int value must be within the range of Integer.MIN_VALUE and
Integer.MAX_VALUE

● If an expression is evaluated to an int value that is that outside of the
allowed range, we would have what is called as “overflow”.

● The result would still be an int value but the value that was expected

Integer.MAX_VALUE VS. Integer.MIN_VALUE

Describe the conditions that will limit the accuracy of expressions
● Computers allot a specific amount of memory to store data based on the

data type.
● Computers represent decimal numbers using binary approximation.

● Some decimal numbers(for example (⅓=0.1333333..), (⅙=0.1666666))
cannot be represented exactly in binary form. Loss of information will occur.
○ This will cause rounding or precision errors when performing calculations.

● To avoid rounding errors that naturally occur, use int values.

Describe the conditions that will limit the accuracy of expressions

Ex.

Describe the conditions that will limit the accuracy of expressions

Describe the conditions that will limit the accuracy of expressions
Integer division in Java:

Describe the conditions that will limit the accuracy of expressions

● Whenever we are using decimal types in java, the
limitation of binary approximation can lead to
rounding errors which will affect the accuracy of
expressions.

● Recommended solutions for the purpose of this
course, use int type whenever possible.

Develop code for assignment statements with compound assignment operators and
determine the value that is stored in the variable as a result.

● Operators can be used to construct compound expressions , or a
combination of expressions.

● Compound assignment operators +=, -=, *=, /=. and %= can be used in
place of the assignment operator in numeric expressions.

● The post increment operator ++ and post decrement operator -- are used
to add 1 or subtract 1 from the stored value of a numeric variable. The new
value is then assigned to the variable.

1.6 (Compound Assignments and Operators)
Learning Objectives:

Compound Operators

Post INCREMENT(++)

POST DECREMENT (--)

Identify the attributes and behaviors of a class found in the libraries contained in an API.
Key things to know for this section:
● Libraries are collections of classes
● An application programming interface(API) specification informs the programmer

how to use those classes.
● Documentation found in API specification and libraries is essential to understanding

the attributes and behaviors of a class defined by the API.
● A class defines a specific reference type
● Classes in the APIs and libraries are group into packages.
● Existing classes and class libraries can be utilized to create objects/instances
● Attributes refer to the data related to the class and are stored in variables.
● Objects have attributes and behaviors
● Attributes describe the objects/instances
● Behaviors refer to what the objects/instances of the class can do(or what can be

done with them).
● Behaviors are defined by objects/instances.

1.7 (Application Program Interface (API) and Libraries
Learning Objectives:

Java API, Classes, Packages, and Libraries

● The Java API is a collection of prewritten classes and interfaces
● The Java API is actually blueprint(plan) and documentation of all

built-in classes, interfaces, along with their methods.
○ The Math, Scanner, and String classes are port of the Java API

● A class a blueprint for creating objects
○ It defines the attributes(variables/fields) and

methods(behaviors)which represent the behavior and state of the
the object.

● A package contains multiple classes and interfaces
○ The Java API is organized into packages
○ For ex.: the Java.util package contains utility classes such as

Scanner, ArrayList, and Random classes.
○ java.io package contains classes for input, and output, such as

FileReader and BufferedReader

Java API, Classes, Packages, and Libraries

● The Java library is a collection of packages and classes that provides
additional functionalities.

● It can be part of the standard Java API or others added by
developers.

● A library:
○ Contains packages

● A package:
○ Contains classes and interfaces

● The Java API if the main standard library provided by Java, which
contains all the packages and classes.

Java API, Classes, Packages, and Libraries

In summary:

● Library: Like a jewelry box

● Package: Like a drawer in the jewelry box for organizing your jewelries.

● Class: One of your jewelries, such a watch or necklace.

● Java API: The instruction manual that tells you what jewelries are in the jewelry box and how to
use them.

● Comments are written for both the original programmer and other programmers to
understand the code and its functionality.

● Comments are ignored by the compiler and are not executed when the program is run.
● There are three types of comments in Java:

○ // which is used to comment one line at a time
○ /* */ which is used to comment out a block of code
○ /** */ which are javadoc comments and are used to create API documentation.

■ The Javadoc type of comments are usually all other the exam.
● A precondition is a condition that must be true just before the execution of a method in

order for it to behave as expected.
○ In this situation, we are not expecting expecting that the method will check to ensure

that preconditions are met
● A postcondition is a condition that must always be true after the execution of of a method.

○ Postconditions describe what is being returned or the current value of the attributes of
an object.

1.8 (Documentation with comments)
Learning Objectives:

Describe the functionality and use of code trough comments

examples of comments

examples of comments

Java has a tool called Javadocs that comes with the Java JDK that will pull out
all of these comments to make API documentation of a class as a web page. It is
created by writing comments inside /** */ and using @ tags.

Description of the code segment

@param tags identify the
parameters and explain
what they represent

Javadocs

/**

 Compares this string to the specified object. The result is true if and only if the argument is not null

 and is a String object that represents the same sequence of characters as this object.

 @param anObject - The object to compare this String against

 @return true if the given object represents a String equivalent to this string, false otherwise

 @see compareTo(String), equalsIgnoreCase(String)

*/

public boolean equals(Object anObject)

{

}

Automatically
converted to this

format in
documentation!

This code format makes it easy for developers to create documentation, because
the Javadocs program automatically translates the Javadoc comments into the
API format. Here we can see that the documentation for equals is being translated
from the Javadoc format into the proper API documentation. Let’s take a look at
how we can implement this ourselves.

examples of comments (Javadoc)

Examples of precondition and postcondition

More Examples postcondition

In Summary
Condition Responsibility When Example

Precondition Caller Before method sum >= 0 in getSum5

Postcondition Method After execution Return is sqrt(number)

Learning Objectives:
1. Identify the correct method to call based on documentation and method signature
2. Describe how to call methods.

● Important terms to know for this section:
○ Method
○ Method signature
○ Parameter
○ Void method
○ Non-void method
○ Argument
○ Method definition/implementation
○ Method calling
○ Procedure abstraction

1.9 (Method Signatures)

● The method signature is the part of the method that contain its name along with the
parameter list(types or order). Neither the return type or the access modifier is part of
the method signature.

● Ex.
○ computeSum()
○ computeSum(int num1)
○ computeSum(int num1, int num2)
○ computeSum(int num1, String message)

(Method Signatures)

method header vs. method signature

Method header = Full declaration line before the body.

Method signature = Just the method name and parameter types (order
matters). Return type and modifiers are not part of the signature.

Method header:
Public static void computeSum(int num1, int num2)

Method signature:
computeSum(int num1, int num2)

Learning Objectives:
Develop code to call class methods and determine the result of those
calls.

● Class methods are associated with the class, not the instance of the
class(object).

● The keyword static is included in the method header before the
method name.

● Class methods are usually called using the name of the class with
the dot (.) operator.

● When the method call happens in the defining class, using the class
name is optional in the call.

1.10 (Calling Class Methods)

What is a method?
● A method is a block of code with a name which can be called

to be executed.
● We call a method by referring to its name

public class Calculator {

//This is an example of a class method definition

public static void computeSum(int num1,int num2) {

int sum=num1+num2;

System.out.println("The sum of the two numbers is "+sum);

}

}

Calling class methods

Class methods vs. Instance Methods

Learning Objectives:
Develop code to write expressions that incorporate calls to built-in
mathematical libraries and determine the value that is produced as a
result.

● Class methods are associated with the class, not the instance of the
class(object).

1.11 (Math Class)

Call static methods (Methods of Math Class)

Below are the methods of the class required for this course.

Call static methods (Methods of Math Class)

Call static methods (Methods of Math Class)

Ex.

assignment of Lab#2

Learning Objectives:
1. Explain the relationship between a class and an object
2. Develop code to declare variables to store reference types

1.12 (Objects: Instances of Classes)

Classes vs. Objects
● Consider, for example, an Employee class designed for a company’s software

application to handle employees’ information and roles.
● The software developer will design a blueprint/class by taking into consideration

the attributes/characteristics that all employees will have in common:
○ Each employee of the company will have a name, id, phone, salary/payRate, isFullTime, isActive,

etc. These are called attributes which are used to describe each employee object.
○ When an employee object is created from the Employee class, it will have its own copy of these

attributes attached to it.
○ Each employee of the company will also have a set of behaviors/actions, such as clockIn(),

clockOut(), checkSchedule(), requestDayOff(), getName(), changeName() etc. These are referred
to as methods which are used to define a set of behaviors for each employee object.

○ For example, an employee called Jone Doe which was created from the Employee class may need
to request for a day off, so the requestDayOff() method from the application will allow him to
request for that day off.

Class as a type
● A class is like a blueprint from which an object is created.

● We can create many objects from the class.

● Objects are specific instance of the general class blueprint.

● The differences among these objects are the attribute values (data) that define each
objects' state.

● For example, a class Student might be used to create many student objects.
○ All these objects will have attributes that are generally common to a student (e.g.,

name, course enrolled, studID, etc).
○ But each object(student) will have its own values for these attributes, depending on

which student it represents. (Later we will see how we can define new classes.)

What does a Class Define?
● The attributes that describe the objects created from the class:

○ An object’s attributes are the data values that describe the object.

○ These are called instance variables

● The behaviors for the objects created from the class:

○ An object's behaviors are defined by a set of actions associated with the object.

○ For example, methods may enable you to access or change an object's attribute
values, or to ask the object to perform a task.

○ These are called methods

● The constructor which is used to create an object of the class and is also used to
initialize the attributes of the object that gets created.

Relationship between classes and objects
(UML diagram)

Class Object

Classes vs. Objects (attributes)
● Below is an example of the declaration of some attributes inside the

Employee class.

Classes vs. Objects (methods)
● Examples of two methods declared within the Employee class

Learning Objectives:
1. Identify using its signature the correct constructor being call.
2. Develop code to declare variables of the correct types to hold

object references
3. Develop code to create an object by calling a constructor

1.13 (Objects Creation and storage (Instantiation)

Constructors (What is it?)
● In order to understand constructors, we need to understand what a

method is. A method, which is often called function or procedure in other programming

languages, is a set of instructions with a name can be called anywhere in
a program (see slide #7 for code example of methods)

● A constructor is a specialized method used to create objects from a
class.

○ It must have the same name as the class
○ It must not have any return type
○ The signature of a constructor contains of its name and the list of its parameter Types

(if any).
○ A default constructor is a constructor that has no parameter.
○ It is not necessary to define a default constructor as Java will create one for you.

Constructors (example)
Lines 11 to 15 show a constructor defined without parameters(default constructor, and it is used
to initialize some of the attributes of the class Employee.

Constructors(without parameters)
● Calling a constructor without parameter

Constructors (with parameters)

How many objects can you create from a class in Java?

A. 1
B. 10
C. 1000
D. As many as you need

What are the data or properties of an object called?

A. attributes
B. methods
C. class
D. object

What specifies the behavior for objects of a class in Java?

A. attributes
B. methods
C. class
D. object

What best describes the purpose of a class’s constructor?

A. Determines the amount of space needed for an object and
creates the object

B. Names the new object

C. Return to free storage all the memory used by this instance of
the class.

D. Initialize the instance variables in the object

A student has created a Dog class. The class contains
variables to represent the following.

● A String variable called breed to represent the breed of the dog
● An int variable called age to represent the age of the dog
● A String variable called name to represent the name of the dog

The object pet is declared as type Dog. Which of the following descriptions is

accurate?

A. An attribute of the name object is String.
B. An attribute of the pet object is name.
C. An instance of the pet class is Dog.
D. An attribute of the Dog instance is pet.
E. An instance of the Dog object is pet.

A student has created a Party class. The class contains variables to
represent the following.

● An int variable called numOfPeople to represent the number of
people at the party.

● A boolean variable called discoLightsOn to represent whether the
disco ball is on.

● A boolean variable called partyStarted to represent whether the
party has started.

The object myParty is declared as type Party. Which of the following

descriptions is accurate?

A. boolean is an attribute of the myParty object.
B. myParty is an attribute of the Party class.
C. myParty is an instance of the Party class.
D. myParty is an attribute of the Party instance.
E. numOfPeople is an instance of the Party object.

Learning Objectives:
1. Develop code to call instance methods and determine the result of

these calls.

● Instance methods are called on objects of the class.
● The dot(.) operator is used along with the object name to call

instance methods.
● A method call on a null reference will result in a

NullPointerException.

1.14 (Calling Instance Methods)

Important terms to know for this section
● Methods
● Method definition
● Method calling
● Instance methods
● Class methods
● Parameter
● Formal parameter
● Argument

What is a method?
● A method is a block of code with a name which can be called

to be executed.
● We call a method by referring to its name

public class Calculator {

//This is an example of an instance method definition

public void computeSum(int num1,int num2) {

int sum=num1+num2;

System.out.println("The sum of the two numbers is "+sum);

}

}

Calling instance methods

Calling instance methods(without parameters)

Calling instance methods(with parameters)

Calling instance methods(with return value)

Class methods vs. Instance Methods

Learning Objectives:
1. Develop code to create string objects and determine the result of

creating and combining strings
2. Develop code to call methods on string objects and determine the

result of calling these methods

1.15 (String Manipulation)

Calling String methods (Recall Java API)
● Application program interface (API) and libraries simply complex

programming tasks by allowing software developers to use them without
the need to recreate them when creating software applications.

● Java has many libraries with built-in methods that are made available to
programmers to use. Those methods have already been tested.

● Programmers need to read the documentation for those APIs and
libraries in order to have a good understanding of the attributes and
behaviors of an object of a class.

● Those classes in the APIs and libraries are grouped into packages.
● The String class is part of the java.lang package.
● Classes in the Java.lang package are available by default.

● String: A sequence of characters to be printed.
○ Starts and ends with a " quote " character.

■ The quotes do not appear in the output!!
○ Examples:

"hello"
"This is a string. It's very long!"

● String Restrictions:
○ May not span multiple lines.

"This is not
a legal String."

○ May not contain a " character.
"This is not a "legal" String either."

Recall: Strings

A string enclosed in quotes is called a string literal.

The String object
● Each character in a String object is represented by an integer value. The first character of a

String is always at index 0 whereas the last character is located at the length of the string
subtracted by 1.

Ex.

● As shown above, the total number of characters in the string is 13, but the last character (!)
is at index 12.

● Any attempt to access an index value outside the range of this string will result in an
indexOutOfBoundsExceptions.

● A String object can be concatenated with an object reference which leads to a call to the
toString() method of the referenced object.

Calling String methods
The following String methods are those that will be used for this course.

Calling String methods

Calling String methods

The substring method has 2 versions:
The first version is the one shown above. When called, it returns a substring
from the character located at valued stored in from up to the last character
of string being referenced.
Ex.

Calling String methods

The second version is the one shown above. When called, it returns a
substring starting at the character located at the value stored in variable
from and up to the character located at index to -1 of the string being
referenced.
Ex.

Calling String methods

When called, indexOf method returns the index of the first character of the
String that is being searched if it is found; otherwise, it returns -1
Ex.

Calling String methods

This is the String constructor which creates a new String object which is a
copy of the of the original String object.

References:
● This training document was prepared using some of the resources from

the CollegeBoard, including their AP Computer Science A course
page which can be found at the link below:

● https://apcentral.collegeboard.org/courses/ap-computer-science-a?
utm_source=chatgpt.com

●

https://apcentral.collegeboard.org/courses/ap-computer-science-a?utm_source=chatgpt.com
https://apcentral.collegeboard.org/courses/ap-computer-science-a?utm_source=chatgpt.com

